

Artificial Neural Networks (ANN)

and

 Deep Learning

References:

[1] S. Samarasinghe, Neural Networks for Applied Sciences and

Engineering, Taylor & Francis, 2006.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT

Press, 2016.

[3] S. Haykin, Neural Networks and Learning Machines, Prentice-

Hall, 2009.

[4] J. M. Zurada, Introduction to Artificial Neural Systems, Info

Access and Distribution, 1992.

 [5] L. Fausett, Fundamentals of Neural Networks, Prentice-Hall,

1994.

[6] Selected Papers

Artificial Neural Networks

• McCulloch & Pitts (1943) are
generally recognised as the designers
of the first neural network

• Many of their ideas still used today
(e.g. many simple units combine to
give increased computational power
and the idea of a threshold)

Artificial Neural Networks

• Hebb (1949) developed the first
learning rule (on the premise that if
two neurons were active at the same
time the strength between them
should be increased)

Artificial Neural Networks

• 1940s: The beginning of ANN

• McCulloch & Pitts neurons. Simple logic function represented in a
temporal framework

• 1950s & 60s: The first golden age of ANNs

• Perceptrons (Rosenblatt, Minsky, Papert, Block). Typical configuration
consists of input nodes connected by paths with adjustable weights to
associated neurons. Learning rule enabled configuration consists of
input nodes connected by paths with weights to converge to associate
training inputs with outputs. Adjustment occurs when response is
incorrect.

• ADALINE (Widrow & Hoff). Developed delta rule for single layer
networks. Adjusts weights to reduce the difference between the net
input to the output unit and the desired output.

Historical Development of ANNs

• 1970s: The quiet years

• Kohonen – development of self-organizing feature maps that use a
topological structure for cluster units (SOM)

• Grossberg and Carpenter – Adaptive resonance theory (ART)

• 1980s: Renewed enthusiasm

• Backpropagation (Parker & LeCun). Publicized by PDP Group
(Rumelhart, McClelland et al.)

• Hopfield networks – associative networks to solve constraint
satisfaction problems based on fixed weights and adaptive activations

• Boltzmann machine – nondeterministic neural nets in which weights
or activations are changed on the basis of a probability density
function. Incorporates classical ideas such as simulated annealing and
Bayesian decision theory

Historical Development of ANNs

• 1990s: Many New Structures of ANN

• Wavelet Neural Networks

• Quantum-based Neural Networks

• Cellular Networks

• Others

• 2000 – onwards:

• Spiking Neural Network (3th Generation of ANN)

• After 2000 – Development of Deep Learning

Historical Development of ANNs

How Does the Brain Work ?

NEURON

• The cell that perform information processing in the brain

• Each consists of : SOMA, DENDRITES, AXON, and SYNAPSE

Biological neurons

axon

dendrites

dendrites

synapse

cell

• We are born with about 100 billion
neurons

• A neuron may connect to as many as
100,000 other neurons

Neural Networks

Biological inspiration
Dendrites

Soma (cell body)

Axon

Biological inspiration

synapses

axon
dendrites

The information transmission happens at the synapses.

Biological inspiration

 The spikes travelling along the axon of the pre-synaptic neuron

trigger the release of neurotransmitter substances at the synapse.

 The neurotransmitters cause excitation or inhibition in the

dendrite of the post-synaptic neuron.

 The integration of the excitatory and inhibitory signals may

produce spikes in the post-synaptic neuron.

 The contribution of the signals depends on the strength of the

synaptic connection.

Biological Neurons

• human information processing system consists of brain

neuron: basic building block

– cell that communicates information to and from various parts of body

• Simplest model of a neuron: considered as a threshold unit –a

processing element (PE)

• Collects inputs & produces output if the sum of the input

exceeds an internal threshold value

Real vs Artificial neurons

x0

xn

w0

wn

 o
i

n

i

i xw
0

0

1 if 0 otherwise is 0
n

i i
i

o w x



 

Threshold units

axon

dendrites

dendrites

synapse

cell

Mathematical Representation

b

w1

w2

wn

x1

x2

xn

+

b

x0

f(n) .

.

.

.

n
y

Inputs Weights Summation Activation Output

In
p
u
ts

Output

w2

w1

wn
.
.

… y

1

net b

y f (net)

n

i i

i

w x






 ＋x2

xn

b

x1

Mathematical Representation of some

Activation Functions

n
e

nfa





1

1
)(










00

01
)(

n

n
nfa

nnfa )(

()
x x

x x

e e
y f x

e e






 



Linear Separable

+
+

+

-

-

-
x1

x2

(a)

+

- +

-

x1

x2

some functions not representable - e.g., (b) not linearly separable

(b)

So what can be represented using perceptron?

and or

Representation theorem: 1 layer feedforward networks can
only represent linearly separable functions. That is,
the decision surface separating positive from negative
examples has to be a plane.

Learning Boolean AND

XOR

• No w0, w1, w2 satisfy

XOR

Expressive limits of perceptrons

• Can the XOR function be represented by a perceptron

 (a network without a hidden layer)?

XOR cannot be represented.

1. Set all weights to zero, wi = 0 for i=1 to n, and bias to zero.

2. For each input vector, S(input vector) : t(target output pair),

repeat steps 3-5.

3. Set activations for input units with the input vector Xi = Si

for i = 1 to n.

4. Set the corresponding output value to the output neuron, i.e.

y = t.

5. Update weight and bias by applying Hebb rule for all i = 1 to

n:

Hebb Learning Rule Algorithm for a perceptron:

Hebb Learning Rule Algorithm for AND Gate

Hebb Learning Rule Algorithm for AND Gate

There are 4 training samples, so there will be 4 iterations.

Also, the activation function used here is Bipolar Sigmoidal

Function so the range is [-1,1].

Step 1 :

Set weight and bias to zero, w = [0 0 0]T and b = 0.

Step 2 :

Set input vector Xi = Si for i = 1 to 4.

X1 = [-1 -1 1]T

X2 = [-1 1 1]T

X3 = [1 -1 1]T

X4 = [1 1 1]T

Hebb Learning Rule Algorithm for AND Gate

Step 3 :

Output value is set to y = t.

Step 4 :

Modifying weights using Hebb Rule:

First Sample:

w(new) = w(old) + x1y1 = [0 0 0]T + [-1 -1 1]T . [-1] = [1 1 -1]T

For the second iteration, the final weight of the first one will be used

and so on.

Second Sample:

w(new) = [1 1 -1]T + [-1 1 1]T . [-1] = [2 0 -2]T

Hebb Learning Rule Algorithm for AND Gate

Third Sample:

w(new) = [2 0 -2]T + [1 -1 1]T . [-1] = [1 1 -3]T

Fourth Sample:

w(new) = [1 1 -3]T + [1 1 1]T . [1] = [2 2 -2]T

So, the final weight matrix is [2 2 -2]T

Hebb Learning Rule Algorithm for AND Gate

Testing the network :

The network with the final weights

Hebb Learning Rule Algorithm for AND Gate

For x1 = -1, x2 = -1, b = 1, Y = (-1)(2) + (-1)(2) + (1)(-2) = -6

For x1 = -1, x2 = 1, b = 1, Y = (-1)(2) + (1)(2) + (1)(-2) = -2

For x1 = 1, x2 = -1, b = 1, Y = (1)(2) + (-1)(2) + (1)(-2) = -2

For x1 = 1, x2 = 1, b = 1, Y = (1)(2) + (1)(2) + (1)(-2) = 2

The results are all compatible with the original table.

Hebb Learning Rule Algorithm for AND Gate

Decision Boundary :

2x1 + 2x2 – 2b = y

Replacing y with 0, 2x1 + 2x2 – 2b = 0

Since bias, b = 1, so 2x1 + 2x2 – 2(1) = 0

2(x1 + x2) = 2

The final equation, x2 = -x1 + 1

