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Artificial Neural Networks 



• McCulloch & Pitts (1943) are 
generally recognised as the designers 
of the first neural network 

• Many of their ideas still used today 
(e.g. many simple units combine to 
give increased computational power 
and the idea of a threshold) 

Artificial Neural Networks 



• Hebb (1949) developed the first 
learning rule (on the premise that if 
two neurons were active at the same 
time the strength between them 
should be increased) 

 

Artificial Neural Networks 



• 1940s: The beginning of ANN 

• McCulloch & Pitts neurons.  Simple logic function represented in a 
temporal framework 

• 1950s & 60s: The first golden age of ANNs 

• Perceptrons (Rosenblatt, Minsky, Papert, Block).  Typical configuration 
consists of input nodes connected by paths with adjustable weights to 
associated neurons.  Learning rule enabled configuration consists of 
input nodes connected by paths with weights to converge to associate 
training inputs with outputs. Adjustment occurs when response is 
incorrect. 

• ADALINE (Widrow & Hoff).  Developed delta rule for single layer 
networks.  Adjusts weights to reduce the difference between the net 
input to the output unit and the desired output. 

Historical Development of ANNs 



• 1970s: The quiet years 

• Kohonen – development of self-organizing feature maps that use a 
topological structure for cluster units (SOM) 

• Grossberg and Carpenter – Adaptive resonance theory (ART) 

• 1980s: Renewed enthusiasm 

• Backpropagation (Parker & LeCun).  Publicized by PDP Group 
(Rumelhart, McClelland et al.) 

• Hopfield networks – associative networks to solve constraint 
satisfaction problems based on fixed weights and adaptive activations 

• Boltzmann machine – nondeterministic neural nets in which weights 
or activations are changed on the basis of a probability density 
function.  Incorporates classical ideas such as simulated annealing and 
Bayesian decision theory 

Historical Development of ANNs 



• 1990s: Many New Structures of ANN 

• Wavelet Neural Networks 

• Quantum-based Neural Networks  

• Cellular Networks 

• Others 

• 2000 – onwards: 

• Spiking Neural Network (3th Generation of ANN)  

• After 2000 – Development of Deep Learning 

 

Historical Development of ANNs 



How Does the Brain Work ?  

NEURON 

• The cell that perform information processing in the brain 

• Each consists of : SOMA, DENDRITES, AXON, and SYNAPSE 



Biological neurons 
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• We are born with about 100 billion 
neurons 

 

• A neuron may connect to as many as 
100,000 other neurons 

 

Neural Networks 



Biological inspiration 
Dendrites 

Soma (cell body) 

Axon 



Biological inspiration 

synapses 

axon 
dendrites 

The information transmission happens at the synapses.  



Biological inspiration 

 The spikes travelling along the axon of the pre-synaptic neuron 

trigger the release of neurotransmitter substances at the synapse. 

 The neurotransmitters cause excitation or inhibition in the 

dendrite of the post-synaptic neuron.  

 The integration of the excitatory and inhibitory signals may 

produce spikes in the post-synaptic neuron.  

 The contribution of the signals depends on the strength of the 

synaptic connection. 



Biological Neurons 

• human information processing system consists of brain 

neuron: basic building block  

 

– cell that communicates information  to and from various parts of body 

 

• Simplest model of a neuron: considered as a threshold unit –a 

processing element (PE) 

 

• Collects inputs & produces output if the sum of the input 

exceeds an internal threshold value 

 

 



Real vs Artificial neurons 
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Mathematical Representation 
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Mathematical Representation of some 

Activation Functions 
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Linear Separable 
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So what can be represented using perceptron? 

and or 

Representation theorem: 1 layer feedforward networks can 
only represent linearly separable functions. That is, 
the decision surface separating positive from negative 
examples has to be a plane. 



Learning Boolean AND 



XOR  

 

 

 

 

 

 

• No w0, w1, w2 satisfy 



XOR 



Expressive limits of perceptrons 

• Can the XOR function be represented by a perceptron   

     (a network without a hidden layer)? 

 

XOR cannot be represented. 

 



1. Set all weights to zero, wi = 0 for i=1 to n, and bias to zero. 

2. For each input vector, S(input vector) : t(target output pair), 

repeat steps 3-5. 

3. Set activations for input units with the input vector Xi = Si 

for i = 1 to n. 

4. Set the corresponding output value to the output neuron, i.e. 

y = t. 

5. Update weight and bias by applying Hebb rule for all i = 1 to 

n: 

Hebb Learning Rule Algorithm for a perceptron:  



Hebb Learning Rule Algorithm for AND Gate 



Hebb Learning Rule Algorithm for AND Gate 

There are 4 training samples, so there will be 4 iterations. 

Also, the activation function used here is Bipolar Sigmoidal 

Function so the range is [-1,1].  

Step 1 :  

Set weight and bias to zero, w = [ 0 0 0 ]T  and b = 0. 

Step 2 :  

Set input vector Xi = Si  for i = 1 to 4. 

X1 = [ -1 -1 1 ]T 

X2 = [ -1 1 1 ]T 

X3 = [ 1 -1 1 ]T 

X4 = [ 1 1 1 ]T 



Hebb Learning Rule Algorithm for AND Gate 

Step 3 :  

Output value is set to y = t. 

Step 4 :  

Modifying weights using Hebb Rule: 

First Sample:  

w(new) = w(old) + x1y1 = [ 0 0 0 ]T + [ -1 -1 1 ]T . [ -1 ] = [ 1 1 -1 ]T 

For the second iteration, the final weight of the first one will be used 

and so on. 

Second Sample: 

w(new) = [ 1 1 -1 ]T + [ -1 1 1 ]T . [ -1 ] = [ 2 0 -2 ]T 

 



Hebb Learning Rule Algorithm for AND Gate 

Third Sample: 

w(new) = [ 2 0 -2]T + [ 1 -1 1 ]T . [ -1 ] = [ 1 1 -3 ]T 

Fourth Sample: 

w(new) = [ 1 1 -3]T + [ 1 1 1 ]T . [ 1 ] = [ 2 2 -2 ]T 

So, the final weight matrix is [ 2 2 -2 ]T 



Hebb Learning Rule Algorithm for AND Gate 

Testing the network :  

The network with the final weights 



Hebb Learning Rule Algorithm for AND Gate 

For x1 = -1, x2 = -1, b = 1, Y = (-1)(2) + (-1)(2) + (1)(-2) = -6 

For x1 = -1, x2 = 1, b = 1, Y = (-1)(2) + (1)(2) + (1)(-2) = -2 

For x1 = 1, x2 = -1, b = 1, Y = (1)(2) + (-1)(2) + (1)(-2) = -2 

For x1 = 1, x2 = 1, b = 1, Y = (1)(2) + (1)(2) + (1)(-2) = 2 

The results are all compatible with the original table. 



Hebb Learning Rule Algorithm for AND Gate 

Decision Boundary :  

2x1 + 2x2 – 2b = y 

Replacing y with 0, 2x1 + 2x2 – 2b = 0 

Since bias, b = 1, so 2x1 + 2x2 – 2(1) = 0 

2( x1 + x2 ) = 2 

The final equation, x2 = -x1 + 1 


