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Flow near a plate suddenly set i motion

Rayleigh’s problem or Stokes’ first problem.

Consider a semi-infinite incompressible Newtonian liquid of viscosity n and density
p. bounded below by a plate at y=0 (l'ig. 6.20). Initially, both the plate and the
liquid are at rest. |
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Figure 6.20. ['low near a plate suddenly sel in motion.



The eoverning equation for w,.(y.?) is homogeneous:

. 0% u, - '.
— = ) — (G.112]
i iy

where v = n/p is the kinematic viscosity. Mathematically, Iiq. (6.112) is called the
heat or diffusion equation. The boundary and initial conditions are:

u, =V at y=0,1>0 )
i, = 0 at y—ox, >0 b (G113
. = 0 at =0, 0 < y< x

o



Similarity solution:

Let us, however, assume that the existence of a similarity solution and the proper
combination of y and ¢ are not known a priori, and assume that the solution is of

the form
u Ay ) = V(€. (G.114)

where _
{ Fl =
£ = —ff . owith  n >0, (6.115)

Here £(y. ) 1s the similarity variable, @ is a constant to be determined later so that
SR .

£ 1s dimensionless, and n is a positive number to be chosen so that the original

partial differential equation (6.112) can be transformed into an ordinary differential

equation with [ as the dependent variable and £ as the independent one.



The boundary condition at y=0 is equivalent to

J=1at =0, (6.116)

whereas the boundary condition at y—oc and the initial condition collapse to a
single boundary condition for f.

J =0 at {— . (6.117)



oy by = V (&), (G.114)

£ = a—, with  n > 0. (G.115]

Differentiation of Nqg. (6.114) using the chain rule gives

e . i :

— = —V n— 'f] = =V j’.‘-'£ 1.

o g

o 32, 2
T - ol LY . s
= vV — and = VvV —
iy &k iy } 2

where primes denote differentiation with respect to £. Substitution of the above
derivatives into Lq. {6.112) gives the following equation:

‘_JFH _|_ illrﬁ.'.i—] J('." - {]

Vi’



By setting n=1/2. time is eliminated and the above expression becomes a second-
order ordinary differential equation,

¢ oL,
5 I =0  with {_rfﬁ.

Jp."." _|_

Taking a equal to 1//r makes the similarity variable dimensionless. For convenience
in the solution of the differential equation, we set a=1/(2/r}). Hence.
‘ i
2Nl

whereas the resulting ordinary differential equation is

201 = 0. (6.119)



This equation is subject tothe boundary conditions (6.116)and (G.117). By straight-

forward integration. we obtain

oy -
b,

) = a /“ f

where 7 is a dummy variable of integration.
(—o0, [=0: therefore,

PO ,
1 / e dr4+ 1 =10
1

and

At £=(

or

i
- ”f: + o,

. [=1: consequently.,

=1. At

(6.120)



where erl is the error function, defined as

2 s L2
erf(£) = — / e dz . (G.121)
S

Jr

Values of the error Tunction are tabulated in several math textbooks. It 1s a mono-

tone increasing function with
er f{0) =0 and im erf(£) = 1.
£ — G
Note that the second expression was used when calculatine the constant ¢;. Substi-
tuting into q. (6.114), we obtain the solution

eyt =V {1 — m‘f(#)] : (6.122]
Ly
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Figure 6.21. Transient flow due to the sudden motion of a plate. Velocity profiles
al vif/{*=0.0001, 0.001. 0.01, 0.1 and 1. where { is an arbitrary length scale.
A boundary-layer thickness, ¢(t), can be defined as the distance from the moving

plate at which w,./V =0.01. This happens when £ is about 1.8, and thus

oty = 3.6t .



