Transient plane Couette flow

Consider a Newtonian liquid of density p and viscosity 1 bounded by two infinite
parallel plates separated by a distance . as shown in Fig. 6.22. The liquid and the

two plates are mitially at rest.
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Figure 6.22. Schematic of the evolution of the velocity in start-up plane Couetle
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The coverning equation is the same as in the previous example,

it %,
. = V —
ol iy

with the following boundary and initial conditions:




Note that, while the governing equation is homogeneous, the boundary con-
ditions are inhomogeneous. Therefore, separation of variables cannot be applied
directly. We first have to transform the problem so that the governing equation and
the two boundary conditions are homogeneous. This can be achieved by decom-
posing iu,.(y.t) into the steady plane Couette velocity profile, which is expected to
prevail at laree times, and a transient component:
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ey, ) = V (.l — ﬁ) — Hi.[ iy, 1), (6.127)

Substituting into Fgs. (6.125) and (6.126). we obtain the followine problem

du'. O, R
— = [ — (6. 125]
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with
. =0 at y=0,1>0 )
uy =0 at y=1M.1>0 > (6.129)
do=V(i=F) at t=0.0<y<H
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Note that the new boundary conditions are homogeneous, while the governing equa-
tion remains unchaneed. Therefore, separation of variables can now be used. The
first step is to express u/(y.!)in the form

Wy t) = Yy T(1). (6.130)

Substituting into Eq. (6.128) and separating the functions Y and 7', we get

1 d7T B d*y

I
vl dt Y dy?’

The onlv way a function of ¢ can be equal to a function of y is for both functions
to be equal to the same constant. For convenience, we choose this constant to be
—a“ /%, (One advantage of this choice is that o is dimensionless.) We thus obtain
two ordinary differential equations:

. _ — 0. (G.131]
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1+ — Y = 0, (G.132]
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The solution to Eq. (6.131) is
T = coe H* (6.133)

Fguation (6.132) is a homogeneous second-order ODE with constant coeflicients,

and its general solution is

rif ey

Yiy) = e ﬁl]lI:F:' 1+ €3 cos| T,

). (6.134)

Applving Fq. (6.130) to the boundary conditions at y=0 and I, we obtain

Yoy {ty =0 and Y(H)T(t) = 0.



The case of T(1)=0 is excluded. since this corresponds to the steady-state problem.
Hence, we eet the followineg boundary conditions for Y

Y{0)=0 and Y(H)=0. (6.135)

Applving the boundary condition at y=0, we get ¢,=0. Thus.

. . (i
Y(y) = ¢ sin(=2) (6.136)
I

Applving now the boundary condition at y=1{. we get
sinfa) = 0, (G.137)
which has infinitely many roots,

ap =ka., k=1.2.-- (G.1.35]

A



To each of these roots correspond solutions Y, and Th.. These infinitely many solu-
tions are superimposed by defining
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where the constants 1. =cpreqr are determined from the initial condition. For {=0.
we gel
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To isolate 17, we will take advantage of the orthogonality property

il
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e 7. k=mn

/ sin{kra) sinfnre)de = 4 (G.141)
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0, k+#n
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BY multiplving both sides of Eq. (6.140) by sin(nxy/ H )dy, and by integrating from
0to fl, we have:

- He o kry. . oamy, oy i . onT Y,
Z ;. / sinf I osin( idy =V / (l — = | sinf by .
Jo I I Joo o\ I i
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Setting {=y /I, we get
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sin(krl) sin(nwl)dé =V / (1 —=&) sin(nmé}df.
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Due to the orthoconality property (6.141). the only nonzero term on the left hand
side is that for A=n: hence,
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Hy = —. (G.142)
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Substituting into Fq. (6.139) eives
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Figure 6.23.
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Transient plane Couetle flow.
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Velocity profiles at vi/H*=0.0001.



