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Abstract
Fluid atomic behavior is an important factor for industrial applications. Computer simulations based on simple models 
predict Poiseuille flow for these atomic structures with the presence of external force. In this work, we describe the dynami-
cal properties of Ar and O2 flows with precise atomic arrangement via dissipative particle dynamics (DPD) and molecular 
dynamics (MD) simulation approaches. In these methods, each model is represented by using Large-scale Atomic/Molecular 
Massively Parallel Simulator package. Simulation results show that maximum rate for velocity of Ar flow in platinum and 
copper microchannels is 0.100 (unit less)/0.091 Å ps−1 and 0.121 (unit less)/0.105 Å ps−1 by using DPD/MD approach. This 
atomic parameter changes to 0.111 (unit less)/0.102 Å ps−1 and 0.125 (unit less)/0.108 Å ps−1 for O2 fluid with mentioned 
approaches. By decreasing the microchannel size, the maximum rate of velocity reaches to 0.101 (unit less)/0.099 Å ps−1 and 
maximum temperature rate decreases to 485 (unit less)/440 K with DPD/MD approaches. These calculated parameters can be 
used in industrial application designing for some processes such as heat transfer in structures. It was seen that the developed 
DPD approach was able to simulate the fluid flow and heat transfer of various types of fluids at micro- and nanoscales with 
suitable accuracy versus MD.

Keywords  Dissipative particle dynamics (DPD) · Molecular dynamics (MD) · Microchannel · Nanochannel

Introduction

Fluid analyzing in various channels at atomic scales is a 
challenging procedure because of the difficulty of particles 
interaction [1–7]. In principle, molecular dynamics (MD) 
method can be used to exactly describe the various struc-
tures and fluids, but it is computationally heavy process. 
In this method, as a result of interaction between atoms, an 
insight into the time evolution of the whole atomic system 
is gained. For computations of the atom’s motion through 
time, Newton’s second law at the atomic level is used as the 
gradient of the interatomic potential function. This compu-
tational method is used for various fluid study by atomic 
accuracy. Zheng et al. [8] simulated the nanofluid thermal 

and atomic behavior in non-ideal channel. Results of this 
study show the molecular dynamics of good accuracy for 
fluids simulation. Mosavi et al. [9] reported the Poiseuille 
water based-nanofluid flows in nanochannels. The results of 
this research show the importance of nanochannels atomic 
arrangement in nanofluid behavior. Asgari et al. [10] simu-
lated the H2O fluid and H2O/Cu nanofluid in atomic micro-
channel and show the Poiseuille manner of them in presence 
of external force. Various methods such as lattice Boltz-
mann and finite volume approaches have been introduced for 
studying fluid behavior in various channels [11–14]. These 
methods have been utilized with some success to simulate 
various microscale phenomena [15, 16]. Dissipative parti-
cle dynamics (DPD) method is another numerical approach 
to simulate the common fluid dynamical behavior. Techni-
cally, DPD particle can be assumed as a group of atoms 
or molecules. Macroscopic conservation equations can be 
gained from the DPD equations of motion [17–19]. Hence, 
DPD computational method can be used for continuum 
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structures. This makes DPD approach a powerful method 
for describing the various phenomena. For example, this 
computational method has been successfully employed to 
simulate various fluids [20–23]. DPD method is also utilized 
for the simulation of multiphase structures at microscales 
[24, 25]. Moreover, other works can be addressed in this 
way, involving the fluid particles effects through the hydro-
dynamic and thermal flow properties. Borhani et al. [26] 
simulated the heat transfer process in a channel with parallel 
plates by using DPD approach with energy conservation. 
The results of this computational research show the DPD 
method ability in description of thermal and atomic behavior 
of fluids. Waheed et al. [27] used DPD approach to model 
the trajectories of micro-objects in a practical microfluidic 
device. The researchers in this computational work achieved 
to high computational speed and accuracy by adjusting the 
DPD parameters, such as force coefficients, thermal ener-
gies of the particles, and time steps. By studying the previ-
ous reports [28–38], we use MD and DPD computational 
methods to simulate atomic manner of O2/Ar fluid in Pt and 
Cu microchannels in this work. Finally, the results of these 
two approaches were compared with each other to estimate 
the accuracy of these computational methods. In summary, 
computational study in this work consists of two main steps:

Step a	� Equilibrium Process of Fluid-Channel Structure: 
Ar/O2 fluid and Pt/Cu channels were simulated in 
the simulation box with lx = ly/4 = lz/4 lengths. Peri-
odic boundary conditions were implemented in x 
direction and fix one used for y and z directions.

Step b	� Atomic Manner of Fluid-Channel Structure: In the 
second step, the density, velocity, and temperature 
profiles of simulated fluid were calculated in the 
simulation box by adding external force to fluid 
particles (Ar and O2), and dynamical behavior of 
simulated fluids in Pt/Ar channels was reported.

Computational method

MD computational method is the common type of atomic 
simulation that is enabled to describe the dynamical behav-
ior of various structures [39–41]. This approach is used in 
the atomic manner study of nano-structures [42–47]. New-
ton’s second law at the atomic level,

(1)Fi =
∑

i≠j

Fij = mi

d2ri

dt2
= mi

dvi

dt

(2)Fi = −
∑

gradVij

(

rij
)

The instantaneous temperature fluctuates are obtained 
by the Eq. (4),

where Nsf is the degree of freedom of the atomic struc-
ture. Lennard–Jones (LJ) formalism:

Potential coefficient from UFF potential is reported in 
Table 1.

In UFF interatomic potential, the bonded interactions 
are described by harmonic formalism. Embedded Atom 
Model (EAM) potential is represented by Eq. (5) [48]:

In this equation, rij is the distance between atoms i and 
j, ϕαβ is a pairwise potential function, ραβ is the contribu-
tion to the electron charge density from atom j of type β 
at the location of atom i, and Fα is an embedding function 
that represents the energy required to place atom i of type 
α into the electron cloud. After atomic modeling of each 
structure, the equations of motion are calculated at initial 
condition. Association of motion equations is fulfilled by 
velocity-Verlet algorithm for integrating the Newton’s law 
that is shown as follows:

where r(t + t�) and v(t + t�) refer to coordinate and veloc-
ity of particles and r(t),v(t) refer to the first rate of these 
parameters, respectively. These MD simulations are done 
by LAMMPS simulation package in metal model, and the 
physical parameter units in this model are represented in 
Table 2 [49–52].
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(7)v(t + t�) = v(t) + a(t)�t

(8)r(t + t�) = r(t) + v(t)�t

Table 1   The length and energy 
parameters for LJ potential in 
our MD simulations [46]

Element σ/Å ε/eV

Ar 3.868 0.00802
O 3.500 0.00009
Pt 2.754 0.00347
Cu 3.495 0.00022
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In the second phase of this work, we use DPD approach 
to study the fluid behavior. DPD is a computational approach 
to study the dynamic properties of various structures. It was 
introduced by Hoogerbrugge and Koelman to avoid the lat-
tice artifacts of the so-called lattice gas automata [53, 54]. 
Later, it was optimized by P. Espanol to ensure the appropri-
ate equilibrium state [55, 56]. The algorithms presented in 
these groups choose randomly a pair particle for applying 
DPD thermostating. Computationally, DPD is an effective 
simulation approach which involves a group of particles dis-
place in defined region. In this method, the total force which 
is acting on a particle i is given by a sum over all particles 
j that lie within a defined cutoff distance of three pairwise 
additive forces [57]:

In this equation, the first term is a conservative force, the 
second is a dissipative force, and the third is a random force, 
respectively. All parameters in Eq. (6) are unit less. The con-
servative term in this equation acts to give beads a chemical 
identity, while the dissipative and random terms equilibrate 
the temperature of simulated structure. An important prop-
erty of all of the nonbonded forces is that they conserve 
momentum, so that hydrodynamic modes of the simulated 
structures are detectable for small particle numbers [58–60]. 
The results obtained from DPD simulations highly depend 
on the choice of the potential function as MD simulations. In 
order to get correct results, one should choose the potential 
function based on the physical properties. In this potential 
function, the force on atom i due to atom j is given as a sum 
of three terms:

(9)Fi =
∑

j≠i

(

FC
ij
+ FD

ij
+ FR

ij

)

(10)f =
(

FC + FD + FR
)

rij, r < rc

Computationally, in our DPD simulations, the simulation 
box lengths are 30 × 30 × 90 and periodic boundary condi-
tion is used for x and y directions and fix one implemented 
to z direction for the first time [61–75]. All the present DPD 
simulations were provided by LAMMPS. Further, Open Vis-
ualization Tool (OVITO) software is used for visualization of 
our simulations [76]. The initial schematic of fluid and chan-
nel arrangement is depicted by OVITO software in Fig. 1.

Results and discussion

Equilibrium process in fluid‑channel structure

Temperature and total energy of structures are important 
physical parameters in MD and DPD simulations. In our 
simulations, the initial temperatures of particles are set 
at 300 (temperature unit) by using of NPT ensemble for 
2,500,000 time steps. From Figs. 2 and 3, we can say 
that the temperature rate of Ar particles converged to 300 
after equilibrium phase of simulations and so all physi-
cal parameters in this computational study reported after 
2,500,000 time steps. For O2 fluid, similar results are cal-
culated as reported in Table 3. Physically, the temperature 
convergence in structures indicates the limited oscilla-
tion of particles in which this oscillation is appropriate 
with the temperature. Total energy of structures is another 
important physical parameter that equals the kinetic and 
potential energies of particles. Figs. 4 and 5 show the 
total energy of Ar/O2 fluid convergence with DPD/MD 
simulation. Numerically, this atomic parameter conver-
gence to − 403/− 332 (unit less) and − 951/− 885 eV with 
DPD and MD approach. Physically, by total energy con-
vergence, the amplitude of simulated structures reaches to 
a minimum rate. This atomic behavior show the stability 
of structures and computationally arises from appropri-
ate selection of initial atomic position and interatomic 
force-fields. Table 3 shows the total energy convergence 
of Ar and O2 f luids with various approaches. These 
computational results show that this parameter of fluid 
particles in Pt microchannel has bigger rate and so the 
interatomic interaction between fluid particles is bigger 

(11)FC = A�(r)

(12)FD = −��2(r)
(

rij.vij
)

(13)FR = ��(r)�(Δt)−1∕2

(14)�(r) = 1 − r∕rc

Table 2   The physical 
parameters units in metal model 
of LAMMPS package

Metal Model

Units Quantity
g/mole Mass
Å Distance
ps Time
eV Energy
Å/ps Velocity
eV/Å Force
K Temperature
Bars Pressure
multiple of elec-

tron charge
Charge
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than Cu microchannel. By increasing the total energy of 
structures, the stability of them increases. Similar physi-
cal results calculated for Pt/Cu nanochannels with lower 
sizes are reported in Table 4.     

Density profile of atomic structures

After 2,500,000 time steps, we implemented external force 
to simulated particles. For report of fluid density profile 
in our simulations, we divided microchannel/nanochan-
nel to 183 bins and reported the time averaging rate of 
density under NVE ensemble. The density profiles of Ar/
O2 fluid indicate that the particles are attracted with the 
walls of channels. Physically, the force between wall and 
fluid particles is attractive in which this atomic behavior 
causes density rate to reach a maximum value. Figures 6 
and 7 show the density profile of Ar/O2 fluid in the various 

(a)

(b)

(c)

Fig. 1   Schematic of simulated structure with LAMMPS package at a 
Top, b Perspective, and c Front views
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Fig. 2   Temperature of Ar fluid in Pt microchannel
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Fig. 3   Temperature of Ar fluid in Cu microchannel

Table 3   The final rate of Ar/O2 fluid total energy in Pt and Cu micro-
channels

Pt microchannel Cu microchannel

O2 fluid-MD/eV − 885 − 555
O2 fluid-DPD/Unit less − 332 − 223
Ar fluid-MD/eV − 951 − 691
Ar fluid-DPD/Unit less − 403 − 258
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microchannels. From this figure, we can say that the Ar/
O2 atoms are absorbed by metallic walls and this attraction 
decreases in the middle region of microchannel. Physically, 
in this simulation region, the fluid atoms interacted with 
each other and so the atomic positions of them fluctuate 
relative to an average value. So we conclude that DPD and 
MD computational methods estimate Poiseuille flow for 
Ar/O2 base fluid. These atomic calculations are consistent 
with previous reports and show validity of our simulation 
method [77–79]. In microchannel, the attraction force which 
is implemented to fluid from Pt particles is bigger than Cu 
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Fig. 4   Total energy of Ar fluid in Pt microchannel
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Fig. 5   Total energy of Ar fluid in Cu microchannel

Table 4   The final rate of Ar/O2 fluid total energy in Pt and Cu nano-
channels

Pt nanochannel Cu nanochannel

O2 fluid-MD/eV − 871 − 512
O2 fluid-DPD/Unit less − 312 − 203
Ar fluid-MD/eV − 912 − 680
Ar fluid-DPD/Unit less − 387 − 245
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Fig. 6   Density profile of Ar fluid in Pt microchannel
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one. Numerically, maximum rate of Ar fluid particles den-
sity reaches to 0.046/0.049 atom Å−3 in Pt microchannel 
with DPD/MD method. Industrially, we can conclude that 
the atomic fluids can be more disrupted in Pt structures. 
This atomic disruption cause reduces the efficiency of tar-
get processes such as heat transfer in micro/nano-structures. 
Furthermore, from these calculated profiles, we conclude 
that DPD and MD approaches can describe fluid manner in 
microchannels appropriately. By size decreasing and con-
verting microchannel to nanochannel, general properties of 
fluids are repeated. As reported in Tables 5 and 6, the maxi-
mum rate of Ar/O2 density decreases to 0.036/0.038 and 
0.024/0.028 atom Å−3 rates with DPD and MD approaches. 
These two methods show that density profiles of fluids 
fluctuate around the mean rate in middle region of Pt/Cu 
nanchannels.   

Velocity profile of atomic structures

The velocity profiles of Ar/O2 fluid are calculated in this 
section. This profile shows the fluid dynamical manner 
in simulated channels. Physically, velocity of each atom 
depends on mobility of them and so net force which is 
inserted in these particles is important. Figure 8 shows 
the velocity distribution of Ar fluid in Pt microchannel. 
From this figure, the velocity rate has a minimum rate at 
25 and 158 bins in microchannel. Further, we conclude 
that by getting farther from simulated channel walls, the 
rate of this atomic parameter increases. As depicted in 
Fig. 9, DPD and MD computational methods estimate 
Poiseuille flow for Ar/O2 base fluid in the presence of 
external force. Physically, this dynamical manner occurs 
because of strong atomic interaction between microchan-
nel and fluid atoms. This interaction is attraction and so 
mobility of fluid particles decreases dramatically in vicin-
ity of microchannel walls. By occur this atomic behavior, 
the fluid atoms disruption can be occured in the vicinity 
of the channel walls. Numerically, the maximum rate of 
this parameter of Ar/O2 fluid occurs in middle bins of 
microchannel with 0.100/0.111 and 0.091/0.102 Å ps−1 
rates for Pt microchannels from DPD and MD simulation 
methods, respectively. Similar atomic behavior estimated 

for Cu microchannel and maximum rate of Ar/O2 fluid 
occur in middle bins with DPD/MD approach. As reported 
in Table 7, the maximum rate of Ar/O2 fluid reaches to 

Table 5   The maximum density of O2/Ar fluid in Pt and Cu micro-
channel

Pt microchannel Cu microchannel

O2 fluid-MD/atom/Å3 0.039 0.033
O2 fluid-DPD/Unit less 0.035 0.030
Ar fluid-MD/atom/Å3 0.049 0.042
Ar fluid-DPD/Unit less 0.046 0.040

Table 6   The maximum density of O2/Ar fluid in Pt and Cu nanochan-
nels

Pt nanochannel Cu nanochannel

O2 fluid-MD/atom/Å3 0.028 0.024
O2 fluid-DPD/Unit less 0.024 0.022
Ar fluid-MD/atom/Å3 0.038 0.033
Ar fluid-DPD/Unit less 0.036 0.031
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Fig. 8   Velocity profile of Ar fluid in Pt microchannel
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0.105/0.121 and 0.095/0.105 Å ps−1 rates in Cu channel, 
from stated methods, respectively. This atomic manner of 
fluids has practicable importance in thermodynamic mech-
anisms such as heat transfer procedures. By changing the 
channel size from micro to nanoscale, the maximum rate 
of Ar velocity reaches to 0.095/0.088 Å ps−1 for Pt nano-
channel with DPD/MD simulation method for Ar fluid. 
Tables 7 and 8 report the maximum rate of fluid atoms in 
Pt/Cu channels estimated by various computational meth-
ods. From these calculated ratios, we can conclude that 
atomic fluids in Pt channels have maximum stability and 
so the fluid in this structure has minimum rate of atomic 
velocity. By decreasing the velocity, the time for phase 
transition increases which can be disrupted the thermal 
conductance procedure.   

Temperature profile of atomic structures

In various structures such as atomic fluids, the temperature 
of fluid is appropriate with velocity of them. Theoretically, 
the relation between temperature and velocity of simulated 
structures is described by 1

2
mv2 =

3

2
kT . In our computational 

work, this physical manner is verified exactly by this rela-
tion. Figures 10 and 11 show the temperature profile of Ar/
O2 fluid structure in Pt and Cu microchannels as a function of 
simulation method, respectively. As depicted in this figure, 
the Poiseuille flow has a quadratic temperature profile and 
the maximum rate of temperature for Ar fluid is 448/403 K 
and 485/436 K for Pt and Cu microchannels, which is pre-
dicted by DPD/MD method. O2 fluid temperature behavior is 

similar to O2 fluid as reported in Table 9. From our calcula-
tions for nanochannels, we can conclude that the profile of 
fluid temperature decreases by converting channel size from 
micro to nanosize. These phenomena occur from atomic 
distance decreasing by decreasing of channel size (Fig. 11; 
Table 10). Numerically, the maximum rates of fluid tem-
perature occur in 91 and 92 bins for Pt and Cu nanochannels, 
respectively. The results of this section of calculations show 

Table 7   The maximum velocity of O2/Ar fluid in Pt and Cu micro-
channels

Pt microchannel Cu microchannel

O2 fluid-MD/Å/ps 0.102 0.108
O2 fluid-DPD/Unit less 0.111 0.125
Ar fluid-MD/Å/ps 0.091 0.105
Ar fluid-DPD/Unit less 0.100 0.121

Table 8   The maximum velocity of O2/Ar fluid in Pt and Cu nano-
channels

Pt nanochannel Cu nanochannel

O2 fluid-MD/Å/ps 0.092 0.099
O2 fluid-DPD/Unit less 0.099 0.101
Ar fluid-MD/Å/ps 0.088 0.091
Ar fluid-DPD/Unit less 0.095 0.098
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Fig. 10   Temperature profile of Ar fluid in Pt microchannel as a func-
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the DPD and MD simulations ability to describe atomic fluid 
behavior in micro- and nano-structures.

Impact of Ar/O2 atomic ratio on mixed fluid 
dynamical manner

In the final section of this work, we investigate the O2 and Ar 
atomic ratio effects on dynamical manner of O2–Ar mixture 
fluid. For atomic stability, analysis of this atomic mixture 
fluid in Pt microchannel, temperature, and total energy of 
fluid-channel system is reported. Figures 12 and 13 show 
the total temperature and total energy variation as a function 
of atomic rate of mixture fluids, respectively. As depicted in 
Fig. 13, the total energy of atomic structures numerically 
converged after 2,500,000 time steps by using DPD and MD 
approaches. Temperature of these structure show the simi-
lar manner and this thermodynamic parameter converged 
to 300 in 2,500,000 time steps. Further, total energy curve 
in this section shows that O2–Ar mixture fluid total energy 
converged to bigger rate (magnitude) rather than pure fluids. 
Physically, by rising total energy magnitude rate, the stabil-
ity of simulated structures rises. So we conclude that the 
O2–Ar mixture fluid physical stability is bigger than each 
isolated fluids. Numerically, by adding Ar atoms to initial 
O2 fluid by 1

2
 , 1
3
 , and 2

3
 rates, the total energy of simulated 

structures reaches to − 553/− 1112 eV, − 512/− 1105 eV, 
and − 502/− 1087  eV, respectively, by using DPD/MD 
approaches.

The density, velocity, and temperature profiles of O2–Ar 
mixture fluid with various Ar atomic ratio ( 1

2
 , 1
3
 , and 2

3
 rates) 

are reported in this section. Our DPD/MD simulations 

show that the maximum density of mixture fluid increases 
by increasing the Ar atomic ratio from 0.035/0.039 to 
0.041/0.048 atom Å−3. From Table 11, in our simulated 
microchannels, Cu one has the minimum density rate 
(0.031/0.033). This atomic manner shows that Ar atoms in 
mixture fluid interact with Pt atoms by maximum attraction 
force. Further, the maximum rate of mixture fluid velocity is 
calculated in middle bin of microchnnels and so we can say 
that by adding Ar atoms to O2 base fluid, the Poiseuille flow 

Table 9   The maximum temperature of O2/Ar fluid in Pt and Cu 
microchannels

Pt microchannel Cu 
micro-
channel

O2 fluid-MD/K 421 446
O2 fluid-DPD/Unit less 455 499
Ar fluid-MD/K 403 436
Ar fluid-DPD/Unit less 448 485

Table 10   The maximum temperature of O2/Ar fluid in Pt and Cu nan-
ochannels

Pt nanochannel Cu nano-
channel

O2 fluid-MD/K 418 440
O2 fluid-DPD/Unit less 449 485
Ar fluid-MD/K 398 416
Ar fluid-DPD/Unit less 442 481
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as a function of simulation method and time steps

DPD/Unit Less

MD/eV

0 1E + 06 2E + 06

Time step

0

– 200

– 400

– 600

– 800

– 1000– 1000

– 1200

– 1400

To
ta

l e
ne

rg
y

Fig. 13   Total energy of O2–Ar mixture fluid ( 1
2
 : 1
2
) in Pt microchannel 

as a function of simulation method and time steps

Author's personal copy



2583Develop dissipative particle dynamics method to study the fluid flow and heat transfer of Ar…

1 3

behavior can be detected with DPD and MD approaches. 
The velocity and temperature have direct relation with Ar 
atomic ratio in mixture fluid. By increasing the Ar atomic 
ratio, the oscillation of mixture fluid atoms decreases and 
so velocity of fluid structure decreases, too. Between our 
simulated structures, the maximum rate of atomic velocities 
is reported for Cu microchannel with 0.133/0.121 Å ps−1 
from DPD/MD approaches as reported in Table 12. From 
relation between particle velocity and temperature, we can 
conclude that the temperature of mixture fluid decreases by 
increasing the Ar atomic ratio in simulation box. Numeri-
cally, maximum rate of mixture fluid temperature belongs 
to Cu microchannel with 489/448 K rate with DPD/MD 
approaches as reported in Table 13.

Conclusions

In this computational study, we use dissipative particle 
dynamics and molecular dynamics approaches to describe 
the atomic manner of Ar, O2 and mixture of these atomic 
fluids in Pt and Cu microchannel/nanochannel. In our 
simulations, the atomic ratio of Ar atoms in O2–Ar mix-
ture fluid varies from 1

3
 to 2

3
 . From computational results, we 

conclude that the atomic ratio of each fluid and the type of 

simulated channel are being important parameters to struc-
ture the atomic and thermal behavior. Further, other results 
estimated from our computational study are given as follow:

a.	 The mixture fluid has the maximum atomic stability 
between various structures.

b.	 Fluid atomic mass is an important factor in density pro-
file of O2/Ar fluids. In our DPD/MD simulations, the 
maximum rate of density is calculated for Ar fluid in Pt 
microchannel with 0.046/0.049 atom Å−3.

c.	 DPD/MD simulation results showed that by decreasing 
channel size, the maximum density of fluid decreases to 
0.036/0.038 atom Å−3.

d.	 In simulated structures, the velocity of fluids has reverse 
relation with Ar atomic ratio.

e.	 Maximum rate of atomic velocity is calculated for O2 
fluid in Cu microchannel with 0.125/0.108 Å ps−1 by 
using DPD/MD approach.

f.	 Maximum velocity rate of simulated fluids decreases to 
0.101/0.099 Å ps−1 by simulated channels size decreas-
ing from DPD/MD approach.

g.	 Temperature profile of simulated fluids increases by 
decreasing the Ar atoms ratio.

h.	 Maximum rate of atomic temperature is calculated for 
O2 fluid in Cu microchannel with 499/446 K by using 
DPD/MD approach.

i.	 Decrease in microchannel size decreases the maximum 
rate of fluid temperature to 485/445 K in Pt channel by 
using DPD/MD approach

Finally, these calculated results show the DPD and MD 
method’s ability in various fluid simulation atomic and ther-
mal behavior. By comparing the results of MD and DPD 
simulations, we propose the use of DPD approach to study 
of large-scale simulations of fluid atomic manner in various 
conditions with very low computational cost. So this simu-
lations method can be used for the optimization of various 

Table 11   The maximum rate of O2/Ar mixture fluid atomic density in 
Pt and Cu microchannels as a function of Ar atomic ratio and simula-
tion method

Ar atomic ratio—simula-
tion method

Density in Pt micro-
channel

Density in Cu 
microchannel

1

2
-MD/atom/Å3 0.048 0.033

1

2
-DPD/Unit less 0.041 0.031

1

3
-MD/atom/Å3 0.043 0.030

1

3
-DPD/Unit less 0.035 0.025

2

3
-MD/atom/Å3 0.041 0.028

2

3
-DPD/Unit less 0.032 0.023

Table 12   The maximum rate of O2/Ar mixture fluid atomic veloc-
ity in Pt and Cu microchannels as a function of Ar atomic ratio and 
simulation method

Ar atomic ratio—simula-
tion method

Velocity in Pt micro-
channel

Velocity in Cu 
microchannel

1

2
-MD/Å/ps 0.118 0.121

1

2
-DPD/Unit less 0.125 0.133

1

3
-MD/Å/ps 0.119 0.123

1

3
-DPD/Unit less 0.128 0.135

2

3
-MD/Å/ps 0.022 0.128

2

3
-DPD/Unit less 0.129 0.136

Table 13   The maximum rate of O2/Ar mixture fluid atomic tempera-
ture in Pt and Cu microchannels as a function of Ar atomic ratio and 
simulation method

Ar atomic ratio—simula-
tion method

Temperature in Pt 
microchannel

Temperature in 
Cu microchannel

1

2
-MD/K 428 448

1

2
-DPD/Unit less 473 489

1

3
-MD/K 431 451

1

3
-DPD/Unit less 475 493

2

3
-MD/K 434 455

2

3
-DPD/Unit less 478 499
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fluid to reach maximum efficiency in various industrial 
applications such as thermal conductance, etc.
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