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ABSTRACT
A 3-D simulation of red blood cells (RBCs) described as deformable cells in plasma flow is an indispensable
element of blood flow analysis in the human vessels. To numerically investigate RBC motion in shear and
Poiseuille flow, a mesoscale low dimensional-RBC method based on dissipative particle dynamics method
has been successfully combined with a hybrid lattice Boltzmann method-immersed boundary method.
This new model decreases the computational cost compared to the low dimensional RBC method and
models the deformation of red blood cell accurately. To evaluate and validate the present numerical
method, the relationship between the RBC diameter and the force value derived by the low
dimensional-RBC method is compared with numerical and experimental data. In addition, as a
benchmark test, the deformation index as the function of the capillary number of RBC motion through
a narrow cylindrical tube has been performed. The behaviour of RBC in a shear flow and Poiseuille flow
has been investigated. The present results demonstrated that this model is applied to reduce the
computational cost, while maintaining the model precision.
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1. Introduction

Erythrocytes, also known as red blood cells (RBCs), are the
most numerous cell types in the body and they have a flexible
plasma membrane to squeeze through microvessels. The shape
of RBC is ideal for oxygen transport and squeeze through small
opening in passage ways [1]. Over the past decades, the devel-
opment of realistic and low computational cost models for the
RBC shape and deformation in microvessels has attracted
much research. There are various numerical simulations to
understand the complex red blood cell dynamics in microves-
sels. Gross et al. [2] used the immersed boundary (IB) method,
and a finite element model for the RBC deformation with the
lattice Boltzmann method (LBM) for the hydrodynamics.
They simulated suspension of RBCs in wall driven shear flow.
So, they showed that cell elasticity and the distance to the jam-
ming point are the most superior factors determining the rheol-
ogy of RBCs behaviour. Pan et al. [3] developed a new low
dimensional RBC (LD-RBC) a model based on the dissipative
particle dynamics method (DPD) to simulate the RBC defor-
mation in the microcirculation. They presented that the results
are in good agreement with recent experiments. Boryczko et al.
[4] used discrete- particle approach to model a 3-D system con-
sisting of RBCs, plasma and capillary walls. Their modelling
carried out with sufficient resolution by using 1–10 million par-
ticles. Fedosov et al. [5] modelled infected RBCs by malaria by
using multiscale RBC model based on the DPD method. Their
present results match those obtained by experiments. Chen and
Boyle [6] investigated the spring- network mechanics in large
deformation for 3-D RBC. They showed the effect of network

parameters, i.e. network mesh, spring type and surface
constraint.

All of the above methods obtained are very promising
results, but still suffer from the high computational cost for
3-D RBC deformation in microvessels. For example, in biologi-
cal flows for small arteries where explicit modelling of RBCs is
often required, DPD and discrete-particle models employ hun-
dreds to ten thousand particles to represent a single RBC [7].
Such multi-particle representations may render a simulation
prohibitively expensive. For example, in an arteriole of 50 µm
diameter (500 µm length) with 35% of volume occupied by
RBCs, it would require millions to hundreds of millions of par-
ticles to represent the flow. Furthermore, for LBM, 3-D mesh of
RBC should be constructed via harmonic forces with their
nearest neighbours by finite element numerical technique.
Implementing 3-D unstructured adaptive mesh for modelling
red blood cell may be very limited due to the extremely high
computational cost [8].

To decrease the number of particles and mesh used in simu-
lating RBCs, LD-RBC model based on the DPD algorithm is
employed to obtain the force acting on the discrete particles
of the membrane in this paper. In LD-RBC model, a closed tor-
tus-like ring of 10 DPD particles is used [3]. These particles are
connected by worm-like chain springs combined with bending
resistance. As mentioned recently, millions of particles are used
to represent the flow in DPD. Although, an increase of the flow
density will give better statistics, but is computationally more
expensive. To solve this problem, the combination of the
LBM to account for the plasma flow and LD-RBC model for
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the RBC motion is developed in this work. To show the
interaction of moving and deformable RBCs with the
incompressible plasma flow, IB method is combined with
LBM and LD.

The proposed model focuses on the simulation of the 3-D
RBC motion in a microvessel by hybrid IB-LB-LD-RBC
method. To investigate the possibility for accuracy of hybrid
IB-LB-LD, simulation of a single red blood cell deformation
is demonstrated in shear and Poiseuille flows. The presented
model is examined by comparing the results with the existing
numerical and experimental results and very good agreement
is obtained. It is shown that the proposed hybrid method
(IB-LB-LD-RBC) produces a more accurate and low compu-
tational cost results compared to the DPD method mentioned
for modelling the 3-D RBC motion.

2. Numerical method

2.1. Computational domain

Based on physiological values [1], laminar, Newtonian and
incompressible plasma flow is considered in microvessels. For
modelling of RBC deformation in Couette shear flows, the
shear rate is defined as [9]:

ġ = V/H (1)

where V is the velocity of the moving plate and H is the dis-
tance between two plates.

The blood flow is modelled as a suspension of a red blood
cell in plasma. A ring of 10 colloidal particles connected by a
wormlike chain (WLC) spring is considered to simulate RBC
by LD-RBC and LBM is used for modelling plasma flow.

2.2. Low dimensional-DPD

Dissipative particle dynamics is a stochastic mesoscopic simu-
lation approach [3], bridging the gap between atomistic and
continuum fluid descriptions. Hoogerbrugge and Koelman
[10] introduced this scheme for the first time and its basis in
statistical mechanics becomes well known by Español, Warren
[11] and Marsh [12]. DPD appears as a successful approach in
the simulation of complex fluids, such as suspensions of poly-
mers, DNA, colloids and cells in blood [7]. This method
includes particles representing coarse-grained molecules
which move together in the Lagrangian method.

It should be mentioned that the LD method is a generalised
version of DPD based on this new formulation [7], it resolves
the DPD deficiency. This approach can be used with confidence
to study the properties of suspended particles in a fluid phase,
including the transport of macromolecules, colloids, biomole-
cules such as DNA, and blood cells such as RBC.

To construct the cell in addition to DPD forces [7], the WLC
spring and bending force should be defined. The WLC spring
force interconnecting the colloidal particles in each cell is

taken as [3]:

FU
WLC = kBT/lp × 1/4(1− rij

Lmax
)
2
− 1/4+ rij/Lmax

[ ]
(2)

where lp is the persistence length which measures the chain’s
stiffness, rij is the distance between two neighbour particles,
Lmax is the maximum allowed length for each spring, kBis the
Boltzmann constant and T is the equilibrium temperature of
the system for DPD. The bending resistance is modelled in
the form of angle bending force dependent on the angle
between two springs. This force is given by [3]:

Fb = −∂Uijk/∂rj
Uijk = Eb × [1− cos uijk]

(3)

where uijk is the angle between two springs.
For the RBC with an average radius of 9mm the adopted

length scaling is shown in Table 1.
The mechanical properties of the RBC membrane are the

important factors which have an effect on the cell motion. So,
defining two dimensionless groups as follows is helpful [9]:

EB = Eb/Esa
2

G = mUm/Es
(4)

where a is the radius of RBC, Um is the mean velocity of the
flow, m is the fluid viscosity, Es is the elastic coefficient (it is
equal to kBT/lP) and Eb is the membrane bending resistance.
EB is the ratio of membrane stretching resistance to its bending
resistance. The second dimensionless group is the ratio between
viscose fluid forces and the membrane elasticity.

2.3. Lattice Boltzmann method

As mentioned previously, LBM is suitable for modelling plasma
flow in microvessels. LBM is a particle-based mesoscopic
method for simulating fluid flow which has been applied suc-
cessfully in 3-D tube like microvessels. The density distribution
function fa(x, t) is the fundamental quantity in LBM. Gener-
ally, the discretized Boltzmann equation with external force is
expressed as [13]:

fa(x + eadt, t + dt)− fa(x, t)

= f (eq)a (x, t)− fa(x, t)
t

+ FaDt (5)

where t is the single relaxation time, ea is the lattice velocity
[13], dt is time step, a shows the discrete speed directions
and Fa as the force distribution function for D3Q19 can be
defined as [13]:

Fa = (1− 1
2t

)va(
ea − �u
c2s

+ ea.�u
c4s

.ea).g

v0 = 1/3

va = 1/18 fora = 1− 6

va = 1/36 fora = 7− 18

(6)

where g is the force density acting on the fluid (in this paper can
be defined as the function of RBC elasticity and bending) and

Table 1. Parameters used in DPD simulation [7].

A Lmax lp kb rc kBT

500 1.3 0.0005 50 1.2 0.1
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the corresponding equilibrium distribution function is taken
as [13]:

f eqa = rva 1+ ea.�u
c2s

+ (ea.�u)
2

2c4s
− �u2

2c2s

[ ]
(7)

where cs is the sound speed. Moreover, the density, velocity and
kinetic viscosity of fluid are calculated as [13]:

r =
∑
a

fa

r�u =
∑
a

eafa + 1/2gDt

n = 2t− 1
6

Dt

(8)

2.4. IB method

The IB method was developed [9] to model the coupling
between fluid and solid. In this method, there are two coordi-
nate systems: Lagrangian grid for the solid boundary and Euler-
ian mesh for the fluid. Interpolation is used to communicate
between both coordinate systems in IBM. Details of the IBM
formulation may be found in refs. [14,15]. Briefly, the discre-
tized IBM equations are defined as [14]:

g(x, t) =
∫
G

G(s, t)d(x − X(s, t))ds

∂X(s, t)
∂t

= �u(X(s, t), t) =
∫
V

�u(x, t)d(x − X(s, t))dx

(9)

where �u is the fluid velocity, x and X are Eulerian and Lagran-
gian coordinate, G is force density acting on the boundary, G
and V are the solid and fluid domains and d(x − X(s, t)) is a
Dirac delta function. Fluid forces, g(x,t), are computed by
spreading the solid forces, while the solid velocity is obtained
by interpolating velocity from fluid nodes.

2.5. Hybrid method

As mentioned previously, the large time for simulation of
red blood cell motion in microvessels, necessitates the use
of a hybrid method (LB-LD) which shows the benefit of
everyone. This allows for the use of a larger simulation
time step.

Given a LBM for the fluid and low dimensional method (the
model based on dissipative particle dynamics) for the red blood
cell, a method to couple the two techniques together is required.
Incorporating a moving boundary (such as the surface of the
red blood cell) into the LBM is done by the IB. In the following,
the hybrid algorithm is shown as:

1 Compute the force on particles based on the membrane
deformation by LD method [7]

2 Spread the force from particles to the fluid by IB [14,15]
3 Obtain the flow velocity by LBM [13]
4 Interpolate the velocity back to the particles by IB [14,15]
5 Update all particles position according to new velocity

3. Results

To show the accuracy of the LD-RBC model used to simulate
red blood cell, different stretching force is applied in the oppo-
site direction to two particles of RBC separated by the diameter
of the ring. The parameter used in this simulation is indicated
in Table 1.

Figure 1 shows the RBC shape evolution from equilibrium to
200 pN stretching force at different Nc (the number of par-
ticles) in compare with experimental data [3]. It should be
noticed that an increase in the number of particles results in
a smoother RBC surface. For simulating the flow in microves-
sels, the number of particles could be chosen between 6 and 10
particles to get accurate results in accordance with Figure 1.

To validate the described proposed model, the deformation
index (DI) which determines the deformation and behaviour of
RBC in the flow, is investigated and compared with the pre-
vious numerical results in [16]. DI is defined as [17]:

DI = l
d

(10)

where l is the RBC length and d is the diameter of the cell. These
parameters are shown in Figure 2.

In this paper, the motion of a single RBC in a tube with
diameter of 20mm and 180mm in length is considered. The
no-slip boundary condition is employed on the tube wall and
the periodic condition is imposed in the horizontal x-direction
as expected, the RBC deforms along the tube length and it will
be obtained a parachute shape. In Figure 3 DI is shown as the
function of capillary number (Ca). Ca is defined as:

Ca = mġrRBC
ks

(11)

where ks is shear elasticity and rRBC is RBC radius.
G can be linked to the capillary number in drop dynamics

[18]. As it is indicated in Figure 3 DI increases as Ca increases
and this figure demonstrates that the present results are in good

Figure 1. (Colour online) Cell diameter as the function of RBC stretching force.
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agreement with the numerical results presented by Zhao et al.
[16] compared with 2-D LBM model.

Moreover, the fluid velocity in a microvessel is investigated.
The parabolic profile in the flow of whole blood through 3-D
microvessel is observed as shown in Figure 4. When RBC
moves along the tube, the flattened velocity profile is found
in the microvessel as depicted in Figure 4.

The variation of the streamwise (Ux) is shown as the func-
tion of z axis in Figure 4. As can be seen, the velocity of the
fluid is smaller in the vicinity of the RBC. It should be noted
that the plasma velocity profile is closely related to the RBC
deformation and haematocrit. When the flow approaches an
RBC, the velocity profile becomes more blunted. The image
of the steady shape of RBC on the x–y plate (horizontal
plate) is demonstrated in Figure 5. As expected RBC deforms
along the microvessel and the parachute-like shape of RBC in
poiseuille flow can be observed. The central part of the cell
bulges forward due to the higher values of flow velocity close
to the microvessel centreline. Moreover, the formation of a
parachute-like steady cell shape is closely related to fluid vis-
cous forces which can affect the natural curvature of RBC

membrane. In addition, the variation of velocity around the
centre area is smaller for higher rigidity.

All of the present computations are done using a core-i7/
2.4 GHz computer. As demonstrated in Table 2, the compu-
tational time is 24 h for the present hybrid model and 720 h
for the DPD method. As a result, the proposed method reduces
the computational time and is significantly 30 times faster than
the DPD method.

As illustrated, the main innovation of the proposed model
when compared with other common computational fluid
dynamics solvers such as 3-D LBM and DPD, is that, in

Figure 3. DI as a function of capillary number.

Figure 2. Schematic of red blood cell in blood flow.

Figure 4. Flow velocity profile with and without the present of RBC
(G = 0.22, EB = 0.7).

Figure 5. Parachute shape of RBC in Poiseuille flow (G = 0.22, EB = 0.7).

Table 2. Comparing computational time.

2-D LBM DPD method Hybrid method Method

0.25 720 24 Time (hour)

4 M. ALAFZADEH ET AL.



addition to solving the problem with high accuracy, it decreases
the computational time.

Furthermore, increasing the membrane elastic modulus
and/or bending resistance leads to the more rigidity. In Figure 6

variation of vertical velocity profile is indicated as the function
of cell rigidity. For this purpose, the deformability decreases
with increasing bending resistance and constant elastic module.
As it is shown in this figure, the cell deformability is imposed by
decreasing the membrane bending resistance and it increases
the flow velocity.

In the following, the effect of two values of shear rate on
RBC deformation is considered in the steady shear flow. For
this purpose, a ring of 8 particles is embedded horizontally in
the centre of a 50mm× 10mm× 10mm fluid channel (between
two plates) with the same velocities prescribed on the top and
bottom surface.

There is a direct relation between the value of shear rate and
RBC deformation. In fact, under simple shear flow only two
RBC motions: tumbling and tank-treading have been demon-
strated and related to the RBC mechanics. For very low stress,
the RBC rotates in a solid-like fashion [19] and has been
reported to tumble. This behaviour happens when the cell
axis of symmetry rotates in the shear plane. At high shear stress,
the red blood cell deforms into an ellipsoid and it has a ‘fluid-
like’ tank-treading movement in which the membrane rotates
around an otherwise steady cell shape. Figure 7 demonstrates
the RBC motions at different shear rates. A rigid-body-like
behaviour of the RBC can be seen in this figure. It is shown

Figure 6. Velocity profile for different RBC deformabilities at constant (G = 0.43).

Figure 7. (Colour online) (a) Deformation of RBC in slow shear flow with shear rate ġ = 0.05s−1 (b) Deformation of RBC in slow shear flow with shear rate ġ = 1.5s−1.
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that the shape of the cell stays unchanged during the rotation
which is called tumbling in a low shear rate.

To investigate the response of RBC to high shear stress, the
shear rate of ġ = 1.5s−1 is considered in Figure 7(b). When the
shear rate increases, tank-treading occurs and the streamlines
around the RBC change from circular spinning to a back-
and-forth motion along the flow direction. In this behaviour
the RBC rotates around its centre mass and has a quasi-stable
inclination. It is shown that the RBC elongates and orients to
an ellipsoidal-like shape while tank-treading occurs due to
strong shear flow. The results show that the RBC orientation
in flow changes when ġ increases. Furthermore, the present
results demonstrate that the proposed model recovers the tum-
bling and tank-treading behaviour.

4. Concluding remarks

In this paper, hybrid IB-LBM has been successfully combined
with an LD-RBC based on DPD to simulate the motion and
deformation of RBC in microvessels and shear flow. As men-
tioned the proposed numerical model was created by using
the LD-RBC for modelling of RBC and LBM for the plasma
flow. IB condition is used to present the interaction of RBC
with plasma. The results show that our mesoscale method
has an advantage in dealing with the dynamics of RBCs in
shear and Poiseuille flow. The present results show that the
deformation and mechanical behaviour of RBCs are the impor-
tant factors to affect the flow velocity profile. Furthermore, the
effect of shear rate on RBC deformation is investigated in this
paper. The results demonstrate that high shear stress exchanges
the behaviour of RBC from tumbling to tank-treading. In tum-
bling, the RBC rotates around the centre of mass without
change, whereas in tank-treading, the RBC elongates to an
ellipsoidal like shape. It should be noted that either tank-tread-
ing or fluid tumbling, depending on the viscosity ratio. Based
on the present results, the proposed numerical model was
able to predict all motions and deformations of human RBC
as accurate as Zhao method compared with the 2-D model
with significant reduced computational time. The compu-
tational cost using the hybrid numerical method was reduced
by a factor of 30.
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