
Improving Naïve Bayes Classifier for Software Architecture Reconstruction

Zahra Sadri Moshkenani
Faculty of Computer Engineering

Najafabad Branch, Islamic Azad University
Isfahan, Iran

zahra_sadri_m@sco.iaun.ac.ir

Sayed Mehran Sharafi

Faculty of Computer Engineering
Najafabad Branch, Islamic Azad University

Isfahan, Iran
mehran_sharafi@iaun.ac.ir

Bahman Zamani
Department of Computer Engineering

 University of Isfahan
Isfahan, Iran

zamani@eng.ui.ac.ir

Abstract—Documentation of software architecture is a good
approach to understand the architecture of a software system
and to match it with the changes needed during the software
maintenance phase. In several systems like legacy or older
systems these documents are not available or if available; they
are not up-to-date and usable. So, reconstruction of
architecture in order to maintain these systems is a necessary
activity. When we talk about software architecture, usually we
are looking for a modular view of architecture with low
coupling and high cohesion. In this paper, we try to improve
the algorithm of machine-learning which is presented before
for architecture recovery, and we propose using it for
architecture reconstruction in order to obtain optimum
modularity in the architecture with low coupling and high
cohesion. The proposed algorithm is evaluated in a case study,
and its results are presented.

Keywords-software architecture reconstruction, reverse
engineering, machine learning, data mining, naïve Bayes
classifier

I. INTRODUCTION
When implementing software, software architecture is

always considered as the base of software implementation
process and has the key role in developing software and its
evolution. Software architecture results in better response to
the needs of people interested in the software being
developed, ease of software design and implementation,
easier support and maintenance of the software, and also
simpler and faster software evolution. In architecture design,
designing modules with low coupling and high cohesion
increases the reusability of the modules and helps develop
the next similar software more easily and faster, and also
helps maintain currently-developed software.
Documentation of architecture is a good approach to
understand the architecture of a software system and to
match it with the changes needed during software
maintenance process. In several systems, like legacy systems,
such documents are not available and if so, they are out-of-
date. Reconstruction of architecture due to maintaining these
systems is a necessary activity.

Among the terms referring to software architecture
reconstruction process, two terms: recovery and discovery,
are more frequently used. The process of reconstructing
architecture which is performed bottom-up is called

recovery, and the process of reconstructing architecture
performed top-down is called discovery [1]. Reconstruction
has 2 phases [2]: Reverse engineering and forward
engineering. The former, sometimes called architecture
recovery, concentrates on understanding the architecture of
the existing system and concludes dynamic and static views
of software. The latter, sometimes called architecture
discovery is concerned with rebuilding the architecture of
the system using modern technologies.

Software architecture reconstruction methods usually use
machine learning, data mining or a combination of the two
techniques. These techniques act intelligently, i.e. they
classify the elements in the architecture of a system with
respect to their specific properties, e.g. access to global
variables. So, the architecture will be recovered exactly only
if the primary architecture, that the software is designed
based on it, is created regarding all principles of architecture
design. For this reason, in this paper we plan to improve the
algorithm of machine learning which is presented before in
[3] for architecture recovery, and use it for rebuilding
architecture in order to obtain an optimum modularity in the
architecture with low coupling and high cohesion.

This paper continues in the following sections: section 2
presents a brief introduction to machine learning and data
mining. Section 3 explains the approach suggested in [3] for
architecture recovery using naïve Bayes classifier. Section 4
describes evaluation method and a case study for evaluating
the performance of improved naïve Bayes. In section 5,
difficulties identified with the approach suggested in [3], are
introduced along with the proposed solutions to solve them
with the aim of improving naïve Bayes classifier. Section 6
presents the results of evaluation of improved naïve Bayes
classifier. Section 7 suggests how to use machine learning,
and particularly naïve Bayes classifier in data mining
context, in order to rebuild the architecture with low coupled
and high cohesive modules. Section 8 concludes the paper.

II. MACHINE LEARNING AND DATA MINING
Machine learning involves techniques that are subset of

artificial intelligence and enables the computer to gain
knowledge from data sets and from the behaviors that are
faced (i.e. the environment the computer acts in); so the
computer changes its behavior according to the environment
and its changes. Using these techniques and having the

�

source code or the non-complete or out-of-date architecture,
one can rebuild the architecture of legacy software systems.

The goal and main task of machine learning techniques
is classification, also known as pattern recognition. By
pattern we mean the behavior seen amongst a set of data in
the system. As an example, the behavior that 90% of
customers who buy item A buy item B or E too but they do
not buy item C, is a pattern.

In machine learning techniques, machine learns to
classify various samples in the system based on their
patterns. This means that by making intelligent decisions
based on extracted patterns, the machine puts each sample in
the class related to its pattern.

Data mining is the process of discovering new patterns
from large data sets and uses methods that are in the
intersection of artificial intelligence, machine learning,
statistics and probabilities, and database systems. Data
mining techniques are very useful in reverse engineering and
(those) tasks related to system maintenance [2]. These
techniques help discover relationships and dependencies
among components of the system. Also, they have the ability
to work on large data sets without having any pre-
knowledge about the system. So, using these techniques in
reconstructing the architecture of legacy systems or systems
with non-complete or out-of-date documents is useful. The
goal of data mining is to extract knowledge out of a data set.
This is achieved in 4 ways [2]:

a) Classification: To decide which pre-determined
class to put a component in. The process of making decision
is performed using extracted patterns.

b) Clustering: The process of using similarity function
to decide about putting elements in which pre-determined
classes based on their properties.

c) Association: Patterns extraction
d) Sequence: To recognize the sequence of events, e.g.

if a customer bought item A, then in 30% of cases, he will
also buy item B within next 2 weeks.

The task of data mining is to discover patterns which are
not pre-known, among a lot of data. These patterns are used
in machine learning to teach the learner so that it can
classify elements correctly in pre-determined classes
considering their patterns. Data mining techniques discover
relations between data and then perform classifying,
clustering, pattern extracting, recognizing sequence of
events by using data sets, and extract unknown information
about the data without having any pre-knowledge about
them. While machine learning algorithms teach the learner
to predict and make decisions about new data by using pre-
knowledge. Some data mining applications use machine
learning algorithms and vice versa.

The main method for reconstructing architecture is a 3-
phase process:

a) Recovery: Storing the information related to
objects and components of a system such as access to the
variables.

b) Discovery: Extracting needed information by
applying one of data mining algorithms on the obtained
information in a, and clustering components within the

system using similarity function (in fact, using machine
learning algorithms).

c) Integrating obtained information in a and b, and
demonstrating reconstructed architecture.

III. BAYESIAN LEARNING AND NAÏVE BAYES
CLASSIFIER

Naïve Bayes classifier is a classification algorithm based
on Bayes theory, and it is shared in both data mining and
machine learning techniques. Assuming that n attributes of a
random variable are conditionally independent, this
classifier predicts which class is the best for the random
variable. Bayesian learning is a machine learning algorithm
which uses naïve Bayes classifier. In learning problems, the
important issue is to find an assumption which has the most
occurring probability value in the case when value vector for
random variable’s properties vector exists. Such an
assumption is called Maximum a Posterior (MAP) [3].
Equation (1) is the Bayes formula which is used in naïve
Bayes classifier as similarity function.

���� � ��	
������ � ���������� � ���� �������
This means that we select the k'th value of Y that causes

most probability value to be obtained, as YMAP. In (1), Y is
a random variable and X is a vector of properties related to
Y. In other words, X=<X1,X2, … ,Xm> where Xl shows 1st
property of Y. yk is k'th value for random variable Y and
Xi is i'th vector for considered properties. Part � ������ ����� shows the weight or relative frequency of appearing
(occurring) properties of yk in the sample space. Example 1
explains how naïve Bayes classifier operates in architecture
recovery problems and is derived from [3]. Note the
following parameters:

fi: i'th function that we are determining the best
subsystem to include the function.

sj: j'th subsystem that we are checking.
gk: k'th global variable.
P(fi |sj=T): The probability of fi belongs to subsystem sj

considering access to specific variables.
scount[j]: The number of functions already included in

subsystem sj.
gcount[k]: The number of functions belonging to sj and

having access to gk.
fcount: the number of functions whose subsystems have

been determined.

TABLE I. EXAMPLE 1

Subsystem g3 g2g1Function
s1 F T T f1

s2 T T F f2

s1 T F T f3

s2 F F T f4

Example 1: Table I. shows each function’s access to
global variables and the subsystem that includes the
function, e.g. the first row of the table shows that f1 has
access to g1 and g2 and is included in s1.

Suppose that f5 is recently added to this system and has
access to g1, g2, and g3, (the value of vector X for f5 is
<T,T,T>). To recognize which subsystem is better to
include f5, we do as follows (It is necessary to mention that
in [3] Bayesian learning is used to recover architecture and
not to rebuild it. That is to say the objective of presenting
this example in [3] and using Bayes learning to solve it, has
been to recognize which subsystem has included f5, but not
to answer which subsystem is better to include the f5):

First we compute the probability of f5 belonging to s1
considering that f5 has access to g1, g2 and g3. Then, we
compute the probability of f5 belonging to s2 considering
that f5 has access to the same variables. Then, we select the
subsystem that causes more probability to include f5.
Regarding [4] and the solved example in [3], the following
equations have been used to compute probabilities: ����� � ��� !"#$%&'�� !"�������������������������������������(� ��	� �)*��� � 	�� !"#+%&��� !"#$%����������������,�

The solution of the example is as follows: ��'-��. �)� � ���. �)�	. �)/ 	0 �)/ 	1 �)�� ���.���	. �)��.���	0 �)��.���	1 �)��.�� (&2 3 (&(3 �&(3 �&(� �&4 ��'-��0 �)� � ���0 �)�	. �)/ 	0 �)/ 	1 �)�� ���0�5�	. �)��0���	0 �)��0���	1 �)��0�� (&2 3 �&(3 �&(3 �&(� �&�6
P(f5|s1=T) is the probability of f1 to be included in s1.

P(s1=T|g1=T,g2=T,g3=T) is the probability of s1 to have
access to g1, g2, g3. According to the solved example,
noting that P(f5 |s1=T) > P(f5 |s2=T) (i.e. existing functions
in s1 have more access to the 3 variables than functions in
s2), then s1 is selected for f5.

IV. METHOD AND CASE STUDY SYSTEM TO EVALUATE
PROPOSED CLASSIFIER

Because provided algorithm in [3] is evaluated using k-
fold validation method, on Mosaic 2.6, which is an open
source web browser, we will evaluate improved naïve Bayes
classifier on the same system using the same evaluating
method.

Mosaic 2.6 includes 11 subsystems, 818 routines and
348 global variables. Table II presents subsystems within
Mosaic 2.6 [3]. Regarding [3], since mail-processor and
mosaic-comments subsystems include relatively few
functions, we suppose that these two subsystems are not in
Mosaic 2.6 and omit their functions from functions set.

To evaluate the proposed (improved) naïve Bayes
classifier, we use 2 set types, training set and test set.
Training set is a one in which classification of samples is
specified and is used to train the classifier. To evaluate naïve
Bayes classifier performance, test set should be used. Test
set means a set of functions that are not classified yet and the
trained classifier should classify them. Members of training
set and test set are specified using k-fold validation.

K-fold validation is a technique for assessing how the
results of a statistical analysis will be generalized to an
independent data set. In this technique, the main set is
divided into k equally sized sets. One of this k sets is test set
and the k-1 remaining sets are training sets. K-fold

validation runs k times and each of k sets is selected as test
set exactly once.

In this paper, evaluation has been performed by 3-fold
validation. There are several errors in functions divide which
have been performed in [3] so we present the modified sets
as table III, table IV and table V.

V. DIFFICULTIES OF BAYESIAN LEARNING

A. Zero probabilities
If the value of an operand in calculating the probability

using (1) becomes 0, the result will be 0. It means that under
the check function cannot be placed in any of existing
subsystems and must be included in a new subsystem.
Please pay attention to example 2.

Example 2: The newly added function to this system
(Table VI.) is f4 and has access to g1 and g2. Now, using
naïve Bayes classifier and considering the low coupling and
high cohesion, we want to determine the best subsystem that
f4 can be placed within. According to (1) YMAP is:

��7 ���.����.�	. �)����.�	0 �)� � 8
���0����0�	. �)����0�	0 �)� � 8��

So YMAP=0 and it means that f4 belongs to neither s1
nor s2 and a new subsystem like s3 is needed. Perhaps one
concludes that YMAP= 0 means that f4 can be placed in
every subsystem; but if the effective probabilities in
calculating YMAP, are the same and are not zero, this
conclusion will be true. Considering that f4 has access to g1
and g2, adding a new subsystem s3 for f4 will cause low
data cohesion within the subsystems and

TABLE II. MOSAIC 2.6

Number of functionssubsystem name
219 User-interface-manager
144 Cci-manager
113 Mosaic-manager
85 Helpers
64 Image-processors
52 Annotations
49 Hotlists-manager
45 History-manager
30 Newsgroup-manager
11 Mail-processor
6 Mosaic-comments

TABLE III. SET 1
Subsystems Functions

User-interface-manager 72
Cci-manager 45

Mosaic-manager 38
Helpers 27

Image-processors 22
Annotations 18

Hotlists-manager 18
History-manager 15

Newsgroup-manager 12
Total 267

TABLE IV. Set 2

Subsystems Functions
User-interface-manager 72

Cci-manager 48
Mosaic-manager 39

Helpers 28
Image-processors 21

Annotations 19
Hotlists-manager 16
History-manager 15

Newsgroup-manager 9
Total 267

TABLE V. Set 3

Subsystems Functions
User-interface-manager 75

Cci-manager 51
Mosaic-manager 36

Helpers 30
Image-processors 21

Annotations 15
Hotlists-manager 15
History-manager 15

Newsgroup-manager 9
Total 267

high data coupling between them, but as mentioned
before, we are going to reconstruct architecture with high
data cohesive and low data coupled subsystems. Solving the
zero probabilities becomes more important when sparse data
are under the check sets, i.e. they include many zero value
data.

As a solution to this difficulty, we can use Laplacian
correction or Laplacian estimator. If under the check set is
large enough so that adding one unit to each denominator in
probability fraction makes negligible changes, then
Laplacian correction is suitable to solve zero probabilities
problem. The first difficulty with Laplacian correction is the
afore-mentioned assumption. It is not clear what large
enough means, and sometimes it is possible that under the
check set is not large enough, and changes like this will
greatly affect all probabilities. Another difficulty in
Laplacian correction is recalculating overhead time for
recently calculated probabilities. In calculating probabilities
when we face zero probability, we must apply the correction
in all probabilities, calculated or not calculated so far. For
calculated probabilities we

TABLE VI. EXAMPLE 2

Subsystem g3 g2 g1 Function
S1 T F T f1
S1 T F T f2
S2 T T F f3

must recalculate the probabilities applying Laplacian
correction which enforces the calculator system to tolerate
recalculation overhead of time. We have proposed an
approach to be used instead of Laplacian correction to solve
zero probabilities problem which applies improvement in
naïve Bayes classifier performance.

When, in calculating probabilities, at least one of the
operands equals 0, we put 1 instead of that operand(s).

Now a new problem will be raised which is described by
the following example.

��'.��. �)� � �&2 3 8 9 ����:�";�! 9 �&2 3 � � �&2 ��'.��0 �)� � �&�6
These calculated probabilities resulted that f1 must be a

member of s1, while we know that before applying the
correction, s2 used to be the appropriate subsystem for f1.
So, when applying correction to an operand, set the value of
a boolean variable like isZero to true. Having a probability
calculated, check the flag isZero. If it is true, then multiply
calculated probability by -1. If in computing probability
more than one operand has 0 values, we set the flag isZero
equal to true only once. ��'.��. �)� � �&2 9 ;�<:�� � "� :=9 ��'.��. �)� � >�&2 ��'.��0 �)� � �&�6

And it illustrates f1 must be considered as a member of
s2. Now if we have: ��'.��. �)� � �&2 3 8 9 ����:�";�! 9 �&2 3 � � �&2/ ;�<:�� � "� : 9 ��'.��. �)� � >�&2 ��'.��0 �)� � �&4 3 8 9 ����:�";�! 9 �&4 3 � � �&4�/ ;�<:�� � "� : 9 ��'.��0 �)� � >�&4

Then, regarding that minus sign in a probability only
shows that the correction has applied to this probability, the
minimum probability between the two probabilities ought to
be selected, because the operands which participated in
calculating P(f1|s1=T) have greater values than those that
took part in calculating P(f1|s2=T) and because we need data
cohesive subsystem, we select s1 for f1. Another problem
with this approach is separating these two states: ��'.��. �)� � � 3 8 3 8 9 ����:�";�! 9 >� ��'.��0 �)� � � 3 � 3 8 9 ����:�";�! 9 >�

Considering these two calculated probabilities, s2 will be
selected for f1, because functions in s2 have access to global
variables more than functions in s1. Using a counter which
counts the number of real 1s, this problem will be solved.
Assign a counter to each subsystem and before applying the
correction on probabilities, check the operands’ values. For
each value which equals 1, increase the counter by 1. Now if
the calculated probabilities for two subsystems are equal,
compare the subsystems’ counter value. Each subsystem that
has greater counter value will be selected for f1.

 Having the presented approach applied, if we come to
two subsystems that although the maximum probability is
obtained for them, still have equal value of probability, then
the one with more functions should be selected.

B. Equation for Computing P(sj)
Of course, this difficulty appears only in problems

related to discovery or evolution of architecture because we
are not going to find a pattern. As said before, P(sj) is
computed using (2). In (2) the more functions exist in
subsystem j, the more value is obtained for P(sj). Regarding
statistics and probabilities, computing probability of
subsystem using (2) is not correct because when selecting a
subsystem for the function that is being checked, our sample
space members are all existing subsystems in the system,
while (2) considers number of functions whose subsystems
have been determined as sample space members. Another
wrong result that computing probability of subsystem causes
to take place, using (2), is wrong classifying, i.e. to locate a
function in a wrong subsystem because the number of

repetitions of a subsystem is more/less than the others.
Modified equation for (2) is (4). ����� � �&� ?����� !"�������������������������������2�

Where, subsyscount is the number of subsystems that
exist in mosaic system.

Note the case that was seen in the Mosaic system. In the
Mosaic system, when implemented, naïve Bayes classifier
using (2) (i.e. according to [3]), 15 cases of functions are
classified wrong. However, if we use (4) instead of (2) in
implementation of the classifier, these 15 functions are also
classified in the right subsystem.

There are 9 subsystems in mosaic system. Therefore, the
probability of selecting each subsystem to include the
function is 1/9. Now, as an example, we mention a sample
function that exists in mosaic and was wrongly classified
before improving the equation but after improving it, the
function is concluded in a correct subsystem. The function
f423 has access to g86 and g116. Using (2), the computed
probabilities and suggested subsystem for this function has
been as below(of course, we compute probabilities only for
the two subsystems, out of 9 existing subsystems that finally
compete with each other, user-interface-manager or UIM
and cci-manager or CCI). 5�'@01�ABC� �)� � 5�ABC�� 3 �5�	DE �)�ABC�� 3 5�	..E �)�ABC�� � 8F(GH 3 (FI�6 3 �8J1 � 4F8�I 3 �8J@ 5�'@01�KKB �)� � 5�KKB� 3 5�	DE �)�KKB� 3 5�	..E �)�KKB� � 8F�GI 3 ,FGIH 3 �8J1 � 6FGI, 3 �8J@

Considering the computed probabilities, the appropriate
subsystem for f423 is UIM. While calculated value for part � ������ � ���� in (1), which shows the weight or relative
frequency of accessing to the global variables by subsystem
sj when CCI is under the check, is ,FGIH(3 �8J1 and
when the UIM is being checked is (FI�68 3 �8J1. It means
that the probabilities of accessing to the g86 and g116 from
the CCI are more than those of the UIM. Yet, since the
number of repetitions of the UIM has been more than that of
CCI among the functions whose subsystem has been
determined, i.e. there has been a greater number of functions
in this subsystem, the obtained probability for the UIM has
become greater and has removed the effect of less access
probability to the global variables from this subsystem and
results more probability to select UIM. This, i.e. to locate
the f423 in UIM, causes low data cohesive and high data
coupled subsystems. Noting the existing architectural

documents of mosaic, the function f423 is included in CCI.
Using (4) in mosaic system following results is obtained for
the function f423. 5�'@01�ABC� �)� � 5�ABC�� 3 �5�	DE �)�ABC�� 3 5�	..E �)�ABC�� � 8F��� 3 (F8I 3 �8J1 � ,F(, 3 �8J@ 5�'@01�KKB �)� � 5�KKB� 3 5�	DE �)�KKB� 3 5�	..E �)�KKB� � 8F��� 3 ,FGI 3 �8J1 � 2F(8 3 �8J@

Regarding the obtained probabilities, the CCI will be
selected for locating f423. Noting high cohesion and low
coupling and existing documents of mosaic system, this
selection is a right selection.

Computing access probability for each global data is to
compute the probability of a pattern to take pace following
naïve Bayes classifier. But considering the mentioned
difficulty in this subsection, the basic problem is that in
patterns that occur, the subsystem that has most functions in
itself gains more probability of being selected. So, we
consider the selecting probability of subsystems to be equal.
In fact, computed probabilities for accessing every global
data determines the weight or relative frequency of
accessing global data by existing functions in a specific
subsystem; e.g. access to g12 via the functions in s1 is 0.3
meaning that the existing functions in s1 have access to g12
with relative frequency of 0.3.

VI. EVALUATION RESULTS FOR PROPOSED NAÏVE
BAYES CLASSIFIER

The results obtained from applying evaluation to the
improved algorithm of Bayes learning on the mosaic system,
to recover (not reconstruct) architecture, have been shown in
table VII.

Table VII shows the proposed (improved) naïve Bayes
classifier evaluation results. For example, in this table, data
exist in first row, and the second column means that after the
zero probabilities is solved, the classifier correctly classifies
114 out of 267 functions that exist in the first data set. Since
different data sets result in different outcomes, we could not
attain the numbers of the evaluation in [3] and we compared
the proposed classifier evaluation results with those of
evaluating the classifier which we implemented according to
[3]. The important issue is: in each evolution with different
data sets, always the proposed classifier leads to better
outcomes.

TABLE VII. Evaluation results

 correctly classified
(improved naïve Bayes classifier,
both improvements are applied)

correctly classified
(naïve Bayes classifier, only first

improvement is applied)
correctly classified

(naïve Bayes classifier)
data set

142 out of 267=53.1 % 137 out of 267=51.3 % 114 out of 267=42.7 % 1
124 out of 267=46.4 % 118 out of 267=44.2 % 96 out of 267=36% 2
136 out of 267=50.9% 132 out of 267=49.4 % 97 out of 267=36.3% 3

50.1% 48.3% 38.3% Average
In [3], Bayesian learning and particularly naïve Bayes

classifier is proposed as a method for architecture recovery.
Since the goal of classifier which is proposed in [3] is
subsystems’ data cohesion, it intelligently chooses functions
which have access to the same global variables to place them
into the same subsystem. Because as the improved classifier

evaluation’s outcome illustrates, the maximum average
percentage of correctly classified functions is 50.1% and as
Bayesian learning algorithm is a common algorithm in both
machine learning and data mining we propose using this
classifier in forward engineering and software evolution
phase instead of recovery (Reverse engineering) phase. As

proposed classifier concentrates on data cohesive
subsystems, using the classifier in the mentioned phases,
results in high data cohesive and low data coupled
subsystems.

In the forward engineering phase, Bayesian learning
algorithm will be used to diagnose classes and to build new
architecture by calculating the probabilities; i.e. the use of
data mining. In this phase, machine learning (in fact
Bayesian learning) algorithm will be used to cluster
functions that exist in source code in order to obtain new
optimum architecture. On the other hand, Bayesian learning
algorithm can be used in software evolution phase to
determine that under the check function, using
predetermined classes(by data mining) and information
about accesses to global variables, and regarding high
cohesion and low coupling, should be included in which
subsystem; means the use of machine learning.

VII. CONCLUSIONS AND FUTURE WORK

 This paper explains the difficulties with naïve Bayes
classifier in software architecture context and presents an
approach to solve them. Since the proposed classifier acts
intelligently and constructs data cohesive subsystems, the
concluded architecture from this classifier includes high data
cohesive and low data coupled modules. This architecture
will correspond to the architecture that the software is based
on, if in designing base module view of architecture, low
coupling and high cohesion be regarded and for each
function only one appropriate subsystem exist. So, it is
suggested that we use the proposed classifier for architecture
reconstruction and obtain the optimum architecture using
source code and also for architecture evolution instead of
using the classifier for architecture recovery.

As a future work, we plan to develop an automated tool
to use the proposed classifier in both mentioned processes
(architecture reconstruction process and architecture
evolution process).

ACKNOWLEDGEMENT
We want to acknowledge H.A Babri and O. Maqbul,

writers of [3], for providing us with the needed data for the
evaluation of the proposed classifier.

REFERENCES
[1]Ducasse Stephane, and Pollet Damien, “Software Architecture
Reconstruction: A Process-oriented Taxonomy”, IEEE Transaction on
Software Engineering, 2009 ,35(4): 573-591
[2]Montes de Oca, C. Carver, and D.L, “Identification of Data Cohesive
Subsystems Using Data Mining Techniques”, International Conference on
Software Maintenance, 1998,16-23
[3]Maqbool O., and Babri H.A, “Bayesian Learning for Software
Architecture Recovery”, International Conference on Electrical
Enginnering(ICEE 07), 2007 ,1-6
[4]Mitchell Tom, “Machine learning”, 2nd Edition, Mc Graw Hill, 1997
[5]Bishop Christopher M., “Pattern Recognition and Machine Learning”,
1st Edition, New York, Springer, 2006
[6]Witten Ian, Frank Eibe, and Hall Mark, “Data Mining: Practical
Machine Learning Tools and Techniques”, 3rd Edition, Morgan Kaufman,
2011

[7]Sartipi K, Kontogiannis K, and Mavaddat F, “Architectural Design
Recovery using Data mining Techniques”, Proceedings of the Fourth
European Software Maintenance and Reengineering, 2000 ,129-139
[8]Yanbing Guo George, Atlee Joanne M., and Kazman Rick, “A Software
Architecture Reconstruction Method”, Proceedings of the TC2 First
Working IFIP Conference on Software Architecture, 1999,15-3
[9]Bass Len, Clements Paul, Kazman Rick, Software Architecture In
Practice, 2nd Edition, Addison Wesley, 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

