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Abstract—Documentation of software architecture is a good 
approach to understand the architecture of a software system 
and to match it with the changes needed during the software 
maintenance phase. In several systems like legacy or older 
systems these documents are not available or if available; they 
are not up-to-date and usable. So, reconstruction of 
architecture in order to maintain these systems is a necessary 
activity. When we talk about software architecture, usually we 
are looking for a modular view of architecture with low 
coupling and high cohesion. In this paper, we try to improve 
the algorithm of machine-learning which is presented before 
for architecture recovery, and we propose using it for 
architecture reconstruction in order to obtain optimum 
modularity in the architecture with low coupling and high 
cohesion. The proposed algorithm is evaluated in a case study, 
and its results are presented. 

Keywords-software architecture reconstruction, reverse 
engineering, machine learning, data mining, naïve Bayes 
classifier 

I. INTRODUCTION 
When implementing software, software architecture is 

always considered as the base of software implementation 
process and has the key role in developing software and its 
evolution. Software architecture results in better response to 
the needs of people interested in the software being 
developed, ease of software design and implementation, 
easier support and maintenance of the software, and also 
simpler and faster software evolution. In architecture design, 
designing modules with low coupling and high cohesion 
increases the reusability of the modules and helps develop 
the next similar software more easily and faster, and also 
helps maintain currently-developed software. 
Documentation of architecture is a good approach to 
understand the architecture of a software system and to 
match it with the changes needed during software 
maintenance process. In several systems, like legacy systems, 
such documents are not available and if so, they are out-of-
date. Reconstruction of architecture due to maintaining these 
systems is a necessary activity. 

Among the terms referring to software architecture 
reconstruction process, two terms: recovery and discovery, 
are more frequently used. The process of reconstructing 
architecture which is performed bottom-up is called 

recovery, and the process of reconstructing architecture 
performed top-down is called discovery [1]. Reconstruction 
has 2 phases [2]: Reverse engineering and forward 
engineering. The former, sometimes called architecture 
recovery, concentrates on understanding the architecture of 
the existing system and concludes dynamic and static views 
of software. The latter, sometimes called architecture 
discovery is concerned with rebuilding the architecture of 
the system using modern technologies. 

Software architecture reconstruction methods usually use 
machine learning, data mining or a combination of the two 
techniques. These techniques act intelligently, i.e. they 
classify the elements in the architecture of a system with 
respect to their specific properties, e.g. access to global 
variables. So, the architecture will be recovered exactly only 
if the primary architecture, that the software is designed 
based on it, is created regarding all principles of architecture 
design. For this reason, in this paper we plan to improve the 
algorithm of machine learning which is presented before in 
[3] for architecture recovery, and use it for rebuilding 
architecture in order to obtain an optimum modularity in the 
architecture with low coupling and high cohesion. 

This paper continues in the following sections: section 2 
presents a brief introduction to machine learning and data 
mining. Section 3 explains the approach suggested in [3] for 
architecture recovery using naïve Bayes classifier. Section 4 
describes evaluation method and a case study for evaluating 
the performance of improved naïve Bayes. In section 5, 
difficulties identified with the approach suggested in [3], are 
introduced along with the proposed solutions to solve them 
with the aim of improving naïve Bayes classifier. Section 6 
presents the results of evaluation of improved naïve Bayes 
classifier. Section 7 suggests how to use machine learning, 
and particularly naïve Bayes classifier in data mining 
context, in order to rebuild the architecture with low coupled 
and high cohesive modules. Section 8 concludes the paper. 

II. MACHINE LEARNING AND DATA MINING 
Machine learning involves techniques that are subset of 

artificial intelligence and enables the computer to gain 
knowledge from data sets and from the behaviors that are 
faced (i.e. the environment the computer acts in); so the 
computer changes its behavior according to the environment 
and its changes. Using these techniques and having the 
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source code or the non-complete or out-of-date architecture, 
one can rebuild the architecture of legacy software systems. 

The goal and main task of machine learning techniques 
is classification, also known as pattern recognition. By 
pattern we mean the behavior seen amongst a set of data in 
the system. As an example, the behavior that 90% of 
customers who buy item A buy item B or E too but they do 
not buy item C, is a pattern. 

In machine learning techniques, machine learns to 
classify various samples in the system based on their 
patterns. This means that by making intelligent decisions 
based on extracted patterns, the machine puts each sample in 
the class related to its pattern. 

Data mining is the process of discovering new patterns 
from large data sets and uses methods that are in the 
intersection of artificial intelligence, machine learning, 
statistics and probabilities, and database systems. Data 
mining techniques are very useful in reverse engineering and 
(those) tasks related to system maintenance [2]. These 
techniques help discover relationships and dependencies 
among components of the system. Also, they have the ability 
to work on large data sets without having any pre-
knowledge about the system. So, using these techniques in 
reconstructing the architecture of legacy systems or systems 
with non-complete or out-of-date documents is useful. The 
goal of data mining is to extract knowledge out of a data set. 
This is achieved in 4 ways [2]: 

a) Classification: To decide which pre-determined 
class to put a component in. The process of making decision 
is performed using extracted patterns. 

b) Clustering: The process of using similarity function 
to decide about putting elements in which pre-determined 
classes based on their properties. 

c) Association: Patterns  extraction  
d) Sequence: To recognize the sequence of events, e.g. 

if a customer bought item A, then in 30% of cases, he will 
also buy item B within next 2 weeks. 

The task of data mining is to discover patterns which are 
not pre-known, among a lot of data. These patterns are used 
in machine learning to teach the learner so that it can 
classify elements correctly in pre-determined classes 
considering their patterns. Data mining techniques discover 
relations between data and then perform classifying, 
clustering, pattern extracting, recognizing sequence of 
events by using data sets, and extract unknown information 
about the data without having any pre-knowledge about 
them. While machine learning algorithms teach the learner 
to predict and make decisions about new data by using pre-
knowledge. Some data mining applications use machine 
learning algorithms and vice versa.  

The main method for reconstructing architecture is a 3-
phase process: 

a) Recovery: Storing the information related to 
objects and components of a system such as access to the 
variables. 

b) Discovery: Extracting needed information by 
applying one of data mining algorithms on the obtained 
information in a, and clustering components within the 

system using similarity function (in fact, using machine 
learning algorithms). 

c) Integrating obtained information in a and b, and 
demonstrating reconstructed architecture.  

III. BAYESIAN LEARNING AND NAÏVE BAYES 
CLASSIFIER 

Naïve Bayes classifier is a classification algorithm based 
on Bayes theory, and it is shared in both data mining and 
machine learning techniques. Assuming that n attributes of a 
random variable are conditionally independent, this 
classifier predicts which class is the best for the random 
variable. Bayesian learning is a machine learning algorithm 
which uses naïve Bayes classifier. In learning problems, the 
important issue is to find an assumption which has the most 
occurring probability value in the case when value vector for 
random variable’s properties vector exists. Such an 
assumption is called Maximum a Posterior (MAP) [3]. 
Equation (1) is the Bayes formula which is used in naïve 
Bayes classifier as similarity function.  
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This means that we select the k'th value of Y that causes 

most probability value to be obtained, as YMAP. In (1), Y is 
a random variable and X is a vector of properties related to 
Y. In other words, X=<X1,X2, … ,Xm>  where Xl shows 1st 
property of Y. yk is k'th value for  random variable Y and 
Xi is  i'th vector for considered properties. Part � ������ ����� shows the weight or relative frequency of appearing 
(occurring) properties of yk in the sample space. Example 1 
explains how naïve Bayes classifier operates in architecture 
recovery problems and is derived from [3]. Note the 
following parameters: 

fi: i'th function that we are determining the best 
subsystem to include the function. 

sj: j'th  subsystem that we are checking. 
gk: k'th global variable. 
P(fi |sj=T): The probability of fi belongs to subsystem sj 

considering access to specific variables. 
scount[j]: The number of functions already included in 

subsystem sj. 
gcount[k]: The number of functions belonging to sj and 

having access to gk. 
fcount: the number of functions whose subsystems have 

been determined. 

TABLE I.  EXAMPLE 1 

Subsystem g3 g2g1Function 
s1 F T T f1

s2 T T F f2

s1 T F T f3

s2 F F T f4

Example 1: Table I. shows each function’s access to 
global variables and the subsystem that includes the 
function, e.g. the first row of the table shows that f1 has 
access to g1 and g2 and is included in s1. 



Suppose that f5 is recently added to this system and has 
access to g1, g2, and g3, (the value of vector X for f5 is 
<T,T,T>). To recognize which subsystem is better to 
include f5, we do as follows (It is necessary to mention that 
in [3] Bayesian learning is used to recover architecture and 
not to rebuild it. That is to say the objective of presenting 
this example in [3] and using Bayes learning to solve it, has 
been to recognize which subsystem has included f5, but not 
to answer which subsystem is better to include the f5): 

First we compute the probability of f5 belonging to s1 
considering that f5 has access to g1, g2 and g3. Then, we 
compute the probability of f5 belonging to s2 considering 
that f5 has access to the same variables. Then, we select the 
subsystem that causes more probability to include f5. 
Regarding [4] and the solved example in [3], the following 
equations have been used to compute probabilities: ����� � ��� !"#$%&'�� !"�������������������������������������(� ��	� � )*��� � 	�� !"#+%&��� !"#$%����������������,� 

The solution of the example is as follows: ��'-��. � )� � ���. � )�	. � )/ 	0 � )/ 	1 � )�� ���.���	. � )��.���	0 � )��.���	1 � )��.�� (&2 3 (&( 3 �&( 3 �&( � �&4 ��'-��0 � )� � ���0 � )�	. � )/ 	0 � )/ 	1 � )�� ���0�5�	. � )��0���	0 � )��0���	1 � )��0�� (&2 3 �&( 3 �&( 3 �&( � �&�6 
P(f5|s1=T) is the probability of f1 to be included in s1. 

P(s1=T|g1=T,g2=T,g3=T) is the probability of s1 to have 
access to g1, g2, g3. According to the solved example, 
noting that P(f5 |s1=T) > P(f5 |s2=T) (i.e. existing functions 
in s1 have more access to the 3 variables than functions in 
s2), then s1 is selected for f5. 

IV.  METHOD AND CASE STUDY SYSTEM TO EVALUATE 
PROPOSED CLASSIFIER 

Because provided algorithm in [3] is evaluated using k-
fold validation method, on Mosaic 2.6, which is an open 
source web browser, we will evaluate improved naïve Bayes 
classifier on the same system using the same evaluating 
method.  

Mosaic 2.6 includes 11 subsystems, 818 routines and 
348 global variables. Table II presents subsystems within 
Mosaic 2.6 [3]. Regarding [3], since mail-processor and 
mosaic-comments subsystems include relatively few 
functions, we suppose that these two subsystems are not in 
Mosaic 2.6 and omit their functions from functions set.  

To evaluate the proposed (improved) naïve Bayes 
classifier, we use 2 set types, training set and test set. 
Training set is a one in which classification of samples is 
specified and is used to train the classifier. To evaluate naïve 
Bayes classifier performance, test set should be used. Test 
set means a set of functions that are not classified yet and the 
trained classifier should classify them. Members of training 
set and test set are specified using k-fold validation. 

K-fold validation is a technique for assessing how the 
results of a statistical analysis will be generalized to an 
independent data set. In this technique, the main set is 
divided into k equally sized sets. One of this k sets is test set 
and the k-1 remaining sets are training sets. K-fold 

validation runs k times and each of k sets is selected as test 
set exactly once.  

In this paper, evaluation has been performed by 3-fold 
validation. There are several errors in functions divide which 
have been performed in [3] so we present the modified sets 
as table III, table IV and table V. 

V. DIFFICULTIES OF BAYESIAN LEARNING  

A. Zero probabilities 
If the value of an operand in calculating the probability 

using (1) becomes 0, the result will be 0. It means that under 
the check function cannot be placed in any of existing 
subsystems and must be included in a new subsystem. 
Please pay attention to example 2.  

Example 2: The newly added function to this system 
(Table VI.) is f4 and has access to g1 and g2. Now, using 
naïve Bayes classifier and considering the low coupling and 
high cohesion, we want to determine the best subsystem that 
f4 can be placed within. According to (1) YMAP is: 


��7 ���.����.�	. � )����.�	0 � )� � 8
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So YMAP=0 and it means that f4 belongs to neither s1 
nor s2 and a new subsystem like s3 is needed. Perhaps one 
concludes that YMAP= 0 means that f4 can be placed in 
every subsystem; but if the effective probabilities in 
calculating YMAP, are the same and are not zero, this 
conclusion will be true. Considering that f4 has access to g1 
and g2, adding a new subsystem s3 for f4 will cause low 
data cohesion within the subsystems and  

TABLE II.  MOSAIC 2.6 

Number of functionssubsystem name 
219 User-interface-manager 
144 Cci-manager
113 Mosaic-manager 
85 Helpers
64 Image-processors 
52 Annotations
49 Hotlists-manager 
45 History-manager 
30 Newsgroup-manager 
11 Mail-processor
6 Mosaic-comments 

TABLE III.   SET 1 
Subsystems Functions 

User-interface-manager 72 
Cci-manager 45 

Mosaic-manager 38 
Helpers 27 

Image-processors 22 
Annotations 18 

Hotlists-manager 18 
History-manager 15 

Newsgroup-manager 12 
Total 267 

TABLE IV.   Set 2 



Subsystems Functions 
User-interface-manager 72 

Cci-manager 48 
Mosaic-manager 39 

Helpers 28 
Image-processors 21 

Annotations 19 
Hotlists-manager 16 
History-manager 15 

Newsgroup-manager 9 
Total 267 

TABLE V.   Set 3 

Subsystems Functions 
User-interface-manager 75 

Cci-manager 51 
Mosaic-manager 36 

Helpers 30 
Image-processors 21 

Annotations 15 
Hotlists-manager 15 
History-manager 15 

Newsgroup-manager 9 
Total 267 

high data coupling between them, but as mentioned 
before, we are going to reconstruct architecture with high 
data cohesive and low data coupled subsystems. Solving the 
zero probabilities becomes more important when sparse data 
are under the check sets, i.e. they include many zero value 
data.  

As a solution to this difficulty, we can use Laplacian 
correction or Laplacian estimator. If under the check set is 
large enough so that adding one unit to each denominator in 
probability fraction makes negligible changes, then 
Laplacian correction is suitable to solve zero probabilities 
problem. The first difficulty with Laplacian correction is the 
afore-mentioned assumption. It is not clear what large 
enough means, and sometimes it is possible that under the 
check set is not large enough, and changes like this will 
greatly affect all probabilities. Another difficulty in 
Laplacian correction is recalculating overhead time for 
recently calculated probabilities. In calculating probabilities 
when we face zero probability, we must apply the correction 
in all probabilities, calculated or not calculated so far. For 
calculated probabilities we  

TABLE VI.  EXAMPLE 2 

Subsystem  g3  g2  g1  Function 
S1 T F T f1 
S1 T F T f2 
S2 T T F f3 

must recalculate the probabilities applying Laplacian 
correction which enforces the calculator system to tolerate 
recalculation overhead of time. We have proposed an 
approach to be used instead of Laplacian correction to solve 
zero probabilities problem which applies improvement in 
naïve Bayes classifier performance.  

When, in calculating probabilities, at least one of the 
operands equals 0, we put 1 instead of that operand(s).  

Now a new problem will be raised which is described by 
the following example.    

��'.��. � )� � �&2 3 8 9 ����:�";�! 9 �&2 3 � � �&2 ��'.��0 � )� � �&�6 
These calculated probabilities resulted that f1 must be a 

member of s1, while we know that before applying the 
correction, s2 used to be the appropriate subsystem for f1. 
So, when applying correction to an operand, set the value of 
a boolean variable like isZero to true. Having a probability 
calculated, check the flag isZero. If it is true, then multiply 
calculated probability by -1. If in computing probability 
more than one operand has 0 values, we set the flag isZero 
equal to true only once. ��'.��. � )� � �&2 9 ;�<:�� � "� :=9 ��'.��. � )� � >�&2 ��'.��0 � )� � �&�6 

And it illustrates f1 must be considered as a member of 
s2. Now if we have: ��'.��. � )� � �&2 3 8 9 ����:�";�! 9 �&2 3 � � �&2/ ;�<:�� � "� : 9 ��'.��. � )� � >�&2 ��'.��0 � )� � �&4 3 8 9 ����:�";�! 9 �&4 3 � � �&4�/ ;�<:�� � "� : 9 ��'.��0 � )� � >�&4 

Then, regarding that minus sign in a probability only 
shows that the correction has applied to this probability, the 
minimum probability between the two probabilities ought to 
be selected, because the operands which participated in 
calculating P(f1|s1=T) have greater values than those that 
took part in calculating P(f1|s2=T) and because we need data 
cohesive subsystem, we select s1 for f1. Another problem 
with this approach is separating these two states: ��'.��. � )� � � 3 8 3 8 9 ����:�";�! 9 >� ��'.��0 � )� � � 3 � 3 8 9 ����:�";�! 9 >� 

Considering these two calculated probabilities, s2 will be 
selected for f1, because functions in s2 have access to global 
variables more than functions in s1. Using a counter which 
counts the number of real 1s, this problem will be solved. 
Assign a counter to each subsystem and before applying the 
correction on probabilities, check the operands’ values. For 
each value which equals 1, increase the counter by 1. Now if 
the calculated probabilities for two subsystems are equal, 
compare the subsystems’ counter value. Each subsystem that 
has greater counter value will be selected for f1. 

 Having the presented approach applied, if we come to 
two subsystems that although the maximum probability is 
obtained for them, still have equal value of probability, then 
the one with more functions should be selected. 

B. Equation for Computing P(sj) 
Of course, this difficulty appears only in problems 

related to discovery or evolution of architecture because we 
are not going to find a pattern. As said before, P(sj) is 
computed using (2). In (2) the more functions exist in 
subsystem j, the more value is obtained for P(sj). Regarding 
statistics and probabilities, computing probability of 
subsystem using (2) is not correct because when selecting a 
subsystem for the function that is being checked, our sample 
space members are all existing subsystems in the system, 
while (2) considers number of functions whose subsystems 
have been determined as sample space members. Another 
wrong result that computing probability of subsystem causes 
to take place, using (2), is wrong classifying, i.e. to locate a 
function in a wrong subsystem because the number of 



repetitions of a subsystem is more/less than the others. 
Modified equation for (2) is (4). ����� � �&� ?����� !"�������������������������������2� 

Where, subsyscount is the number of subsystems that 
exist in mosaic system. 

Note the case that was seen in the Mosaic system. In the 
Mosaic system, when implemented, naïve Bayes classifier 
using (2) (i.e. according to [3]), 15 cases of functions are 
classified wrong. However, if we use (4) instead of (2) in 
implementation of the classifier, these 15 functions are also 
classified in the right subsystem.  

There are 9 subsystems in mosaic system. Therefore, the 
probability of selecting each subsystem to include the 
function is 1/9. Now, as an example, we mention a sample 
function that exists in mosaic and was wrongly classified 
before improving the equation but after improving it, the 
function is concluded in a correct subsystem. The function 
f423 has access to g86 and g116. Using (2), the computed 
probabilities and suggested subsystem for this function has 
been as below(of course, we compute probabilities only for 
the two subsystems, out of 9 existing subsystems that finally 
compete with each other, user-interface-manager or UIM 
and cci-manager or CCI). 5�'@01�ABC� � )� � 5�ABC�� 3 �5�	DE � )�ABC�� 3 5�	..E � )�ABC�� � 8F(GH 3 (FI�6 3 �8J1 � 4F8�I 3 �8J@ 5�'@01�KKB � )� � 5�KKB� 3 5�	DE � )�KKB� 3 5�	..E � )�KKB� � 8F�GI 3 ,FGIH 3 �8J1 � 6FGI, 3 �8J@ 

Considering the computed probabilities, the appropriate 
subsystem for f423 is UIM. While calculated value for part � ������ � ����  in (1), which shows the weight or relative 
frequency of accessing to the global variables by subsystem 
sj when CCI is under the check, is ,FGIH( 3 �8J1   and 
when the UIM is being checked is (FI�68 3 �8J1. It means 
that the probabilities of accessing to the g86 and g116 from 
the CCI are more than those of the UIM. Yet, since the 
number of repetitions of the UIM has been more than that of 
CCI among the functions whose subsystem has been 
determined, i.e. there has been a greater number of functions 
in this subsystem, the obtained probability for the UIM has 
become greater and has removed the effect of less access 
probability to the global variables from this subsystem and 
results more probability to select UIM.  This, i.e. to locate 
the f423 in UIM, causes low data cohesive and high data 
coupled subsystems. Noting the existing architectural 

documents of mosaic, the function f423 is included in CCI. 
Using (4) in mosaic system following results is obtained for 
the function f423. 5�'@01�ABC� � )� � 5�ABC�� 3 �5�	DE � )�ABC�� 3 5�	..E � )�ABC�� � 8F��� 3 (F8I 3 �8J1 � ,F(, 3 �8J@ 5�'@01�KKB � )� � 5�KKB� 3 5�	DE � )�KKB� 3 5�	..E � )�KKB� � 8F��� 3 ,FGI 3 �8J1 � 2F(8 3 �8J@ 

Regarding the obtained probabilities, the CCI will be 
selected for locating f423. Noting high cohesion and low 
coupling and existing documents of mosaic system, this 
selection is a right selection. 

Computing access probability for each global data is to 
compute the probability of a pattern to take pace following 
naïve Bayes classifier. But considering the mentioned 
difficulty in this subsection, the basic problem is that in 
patterns that occur, the subsystem that has most functions in 
itself gains more probability of being selected. So, we 
consider the selecting probability of subsystems to be equal. 
In fact, computed probabilities for accessing every global 
data determines the weight or relative frequency of 
accessing global data by existing functions in a specific 
subsystem; e.g. access to g12 via the functions in s1 is 0.3 
meaning that the existing functions in s1 have access to g12 
with relative frequency of 0.3. 

VI. EVALUATION RESULTS FOR PROPOSED NAÏVE 
BAYES CLASSIFIER  

The results obtained from applying evaluation to the 
improved algorithm of Bayes learning on the mosaic system, 
to recover (not reconstruct) architecture, have been shown in 
table VII. 

Table VII shows the proposed (improved) naïve Bayes 
classifier evaluation results. For example, in this table, data 
exist in first row, and the second column means that after the 
zero probabilities is solved, the classifier correctly classifies 
114 out of 267 functions that exist in the first data set. Since 
different data sets result in different outcomes, we could not 
attain the numbers of the evaluation in [3] and we compared 
the proposed classifier evaluation results with those of 
evaluating the classifier which we implemented according to 
[3]. The important issue is: in each evolution with different 
data sets, always the proposed classifier leads to better 
outcomes.  

TABLE VII.  Evaluation results  

 correctly  classified 
(improved naïve Bayes classifier, 
both improvements are applied) 

correctly classified 
(naïve Bayes classifier, only first 

improvement is applied) 
correctly  classified 

(naïve Bayes classifier)  
data set 

142 out of 267=53.1 % 137 out of 267=51.3 % 114 out of 267=42.7 % 1 
124 out of 267=46.4 % 118 out of 267=44.2 % 96 out of 267=36% 2 
136 out of 267=50.9% 132 out of 267=49.4 % 97 out of 267=36.3% 3 

50.1% 48.3% 38.3% Average 
In [3], Bayesian learning and particularly naïve Bayes 

classifier is proposed as a method for architecture recovery. 
Since the goal of classifier which is proposed in [3] is 
subsystems’ data cohesion, it intelligently chooses functions 
which have access to the same global variables to place them 
into the same subsystem. Because as the improved classifier 

evaluation’s outcome illustrates, the maximum average 
percentage of correctly classified functions is 50.1% and as 
Bayesian learning algorithm is a common algorithm in both 
machine learning and data mining we propose using this 
classifier in forward engineering and software evolution 
phase instead of recovery (Reverse engineering) phase. As 



proposed classifier concentrates on data cohesive 
subsystems, using the classifier in the mentioned phases, 
results in high data cohesive and low data coupled 
subsystems. 

In the forward engineering phase, Bayesian learning 
algorithm will be used to diagnose classes and to build new 
architecture by calculating the probabilities; i.e. the use of 
data mining. In this phase, machine learning (in fact 
Bayesian learning) algorithm will be used to cluster 
functions that exist in source code in order to obtain new 
optimum architecture. On the other hand, Bayesian learning 
algorithm can be used in software evolution phase to 
determine that under the check function, using 
predetermined classes(by data mining) and information 
about accesses to global variables, and regarding high 
cohesion and low coupling, should be included in which 
subsystem; means the use of machine learning. 

VII. CONCLUSIONS AND FUTURE WORK 

 This paper explains the difficulties with naïve Bayes 
classifier in software architecture context and presents an 
approach to solve them. Since the proposed classifier acts 
intelligently and constructs data cohesive subsystems, the 
concluded architecture from this classifier includes high data 
cohesive and low data coupled modules. This architecture 
will correspond to the architecture that the software is based 
on, if in designing base module view of architecture, low 
coupling and high cohesion be regarded and for each 
function only one appropriate subsystem exist. So, it is 
suggested that we use the proposed classifier for architecture 
reconstruction and obtain the optimum architecture using 
source code and also for architecture evolution instead of 
using the classifier for architecture recovery.  

As a future work, we plan to develop an automated tool 
to use the proposed classifier in both mentioned processes 
(architecture reconstruction process and architecture 
evolution process). 
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