
An Approach for Performance Evaluation of Batch-sequential and Parallel
Architectural Styles

Golnaz Aghaee Ghazvini
Computer Engineering Department,
MSc student, Young Research Club,

Islamic Azad University,
 Njafabad Branch,

Esfahan, Iran
Aghaee.golnaz@sco.iaun.ac.ir

Sayed Mehran Sharafi
Computer Engineering Department,

Islamic Azad University,
 Najafabad Branch,

Esfahan, Iran
Mehran_sharafi@iaun.ac.ir

Sima Emadi
Computer Engineering Department,

Islamic Azad University,
Maybod Branch,

Yazd, Iran
emadi@maybodiun.ac.ir

Abstract— Software architecture is considered one of the most
important indices of software engineering today. Software
Architecture is a technical description of a system indicating its
component structures and their relationships, and is the
principles and rules governing designing. Software
Architecture can be utilized to materialize most of the
important quality attributes in the system; and these qualities
should be evaluated at architectural level. Therefore, to what
extent software architectural design has been successful
depends on the quality attributes of the system. One of the
most important quality attributes is the performance. Usually
an architect takes into consideration in software architectural
design is to use software architectural styles. An architecture
style is a set of principles which an architect uses in designing
software architecture. Since software architectural styles have
frequently been used by architects, these styles have a specific
effect on quality attributes. If this effect is measurable for each
existing style, it will enable the architect to evaluate and make
architectural decisions more easily and precisely. In this paper
an effort has been made to introduce a model for investigating
this attribute in Parallel and Batch-sequential styles. So, our
approach initially models the system as Discrete Time Markov
Chain or DTMC, and then extracts the parameters to predict
the response time of Batch-sequential and Parallel style. Then,
in order to evaluate the systems whose architectures include
both styles, we will generalize our model.

keywords-Software architecture; Discrete Time Markov
Chain; Batch-sequential style;Parallel style; Performance
attribute;

I. INTRODUCTION
Component-Based software engineering provides an

opportunity for better quality and increased productivity in
software development by using reusable software
components [3]. One of the most important quality attributes
in software architecture is performance. Early performance
analysis and measurement approaches for a component-
based software system can help software architects to
evaluate their systems based on the performance
specification created by component developers [4]. During
the last decades, there have been many approaches for
evaluating the performance attributes of component-based
systems. These approaches have been classified into formal

and informal models. Classical formal models such as
queuing networks [3], stochastic process algebras [6]
stochastic Petri nets [7] and automata [8] can be used to
model and analyze component-based software systems.
However, these approaches do not specifically consider
performance evaluation of architectural styles using Markov
chain. An architectural style is a combination of architectural
constraints that restricts the roles / features of architectural
components and allows relationships among these
components within any architecture that conforms to that
style. [9] Architects use software architectural styles in
designing software architecture. Common styles are Batch-
sequential, Pipe and Filters, Call and Return and also Fault
tolerance. In a batch-sequential style, components are
executed in a sequential manner. This means that only a
single component is executed in any instance of time. For
example, a bank performs a batch of transactions update to a
master file in sequence. A parallel style has a set of
components running concurrently; a fault tolerant style has a
set of back-up components compensating for the failure of
the others; call and return style has some components, calling
the other components at an indefinite number of times [10,
11]. In this paper two of the most common styles used in the
architectural design of most systems were selected, and a
model is offered to evaluate the performance attribute in
these styles quantitatively. Then, in order to evaluate the
systems whose architectures include both styles, we will
generalize our model. Our approach consists of modeling the
software architecture as a Discrete Time Markov Chain
(DTMC), and the DTMC model is then analyzed to get
performance attributes of the systems. The rest of the paper
is divided as follows: section II introduces performance
evaluation of Batch-sequential and Parallel styles. Section III
illustrates a software architecture that contains sequential and
parallel architectural styles. Example and future works are
presented in section IV and V.

II. PERFORMANCE EVALUATION OF BATCH-SEQUENTIAL
AND PARALLEL STYLES:

In this section, considering the multiplicity of
performance parameters, the parameter of ‘response time’
which is one of the most important parameters has been

V1-72

2010 International Conference on Future Information Technology (ICFIT 2010)

978-1-4244-8371-6 C/10/$26.00 2010 IEEE

selected. The model is offered for quantitative evaluation of
this parameter in architectural styles.

The state model in this paper is based on Discrete Time
Markov Chains (DTMC), so we Discuss Markov process and
Discrete Time Markov Chains which is use to model the
software of a system. Markov process is a stochastic process
whose dynamic behavior is such that probability
distributions for its future development depend only on the
present state and not on how the process arrived in that
state. [1,11] Let {xk} be a discrete time stochastic process
which takes on values in a countable sets, called the state
space.{xk} is called a Discrete Time Markov Chain (or
simply a Markov chain , when
the discrete nature of the index is clear) if :

)1,...),1 −=1−κΧ=κΡ(Χ=−=−κΧ−=1−κΧ=κΡ(Χ kikizkizkiki

 Where i,j ∈ s . For an application consists a number of
components, we can present its software architecture using a
DTMC .the state of the DTMC at an execution step is given
by the component in execution of that step. Transitions
between states represent transfer of control from one
component to another.

A. Batch-Sequential Style
In a batch-sequential style, components are executed

sequentially, In this type of architecture style, only one
component is executed at any instance of time, the control
flow is transferred to only one of its successors upon the
completion of a component[10].
One of the examples of this style is modeled in fig.1 (a),
where c1,c2…ck are software components in a machine,
component c2 transfer flow control to one of its branches
subsequent components.

The transformation from the architecture to state model
can be viewed as a mapping of one component to one state.
The state model is shown in fig.1 (b).

(a)

(b)

Figure1 (a) batch-sequential style, (b) state model

For determining the model parameters, we assume that
transition between adjacent components is possible. We
could calculate the number of visit to each of the state i

starting from state 1. By Vi= qi+∑pki.vk where, qi is the
probability of starting in state i,[4,13]
- The service time required to service one request by a
software component that is using a standard Cpu and Disk
are shown by cpu (i) and disk (i).
- m is the number of components on a machine.
- fc and fd are the rating factors of the Cpu and Disks
respectively of each machine, which are present in the
system [13].
Finally, we calculate the total Cpu and Disk service time
given by equation 1:

∑
∈

=−
mi

icpuivcftimeCpu)().(

∑
∈

=−
mi

idiskivdftimeDisk)().((1)

B. Parallel Style
Parallel style has multiple components running

concurrently, and in this way service time required is
reduced An example of this style is shown in figure 2(a),
where components c1,c2...ck in the dotted oval are running
concurrently. These components cooperatively work on a
partition of outputs produced by previous component, and
synchronously release the control to the next subsequent
component. Figure 2(b) shows the state model of figure 2(a).
A set of cooperative concurrent components in software
architecture is modeled to one single state in state diagram.

 (a) (b)

Figure2 (a) parallel style (b) State model

Considering that all the parallel components are modeled
to only one state spl, thus the visit count to state spl is
calculated separately, through the equations 2:

ksplksplpl vpqsv ∑+= .)(
 (2)

We also consider the variable Tcommunication to indicate the
time spent on communication synchronization components
that are executed in parallel. Finally for all parallel
components, we can calculate the total Cpu and Disk service
time given by equation 3:

]))(()([ioncommunicatTicpu
mi

MAXplsvcftimeCpu +
∈

=−

]))(()([ioncommunicatTicpu
mi

MAXplsvdftimeDisk +
∈

=−

(3)

V1-73

2010 International Conference on Future Information Technology (ICFIT 2010)

III. SOFTWARE ARCHITECTURE FOLLOWING BATCH-
SEQUENTIAL AND PARALLEL STYLE:

The application usually can not be performed completely
in parallel, and the parts of the application should be forced
to be implemented sequentially, therefore we assume a
selective architecture, which is a combination of parallel and
sequential styles. This means to run the program two kinds
of machines will be used: a machine which contains parallel
components, and the other one which contains sequential
components. However, formation of these machines can
change, considering the desired application. We assume that
parallel components are allocated on a single machine, and
any other components are allocated on a separate single
machine, or if some components are allocated on a machine,
all are executed in order and not run at the same time. We
model the software system that combines Parallel and
Sequential architecture using a DTMC [1]. A state can
represent either a single component execution or a set of
concurrent components executions. These concurrent
components that execute on the machine h, cooperatively
work on a partition of outputs produced by component ck-1
and synchronously release the control to the next initial
component on the next machine. Components that are
executed on sequential machines are assigned to individual
states, and the set of concurrent components that are
executed on parallel machine is modeled into one single state.
Fig.3 (a) shows the architecture and Fig.3 (b) shows the
DTMC model of fig.3 (a).

(a)

(b)

Figure3 (a) Architecture view (b) state model

In this architecture only the transitions between adjacent
components are possible. On parallel machine h, the
components are executed in parallel, so the required Cpu and
Disk service time they needed will overlap; the maximum
service time of them will eventually be considered. But in
machine j≠h, total service time is considered, when
components are executed sequentially. Cpu and Disk service
time for this architecture is given by equation 4:

⎪
⎪
⎩

⎪⎪
⎨

⎧

=+

≠
=−

∈

∈
∑

hjTiCPUMAXVf

hjiCPUivf
jtimeCPU

commisplcj

mi
cj

]))(([

)().(
)(

⎪
⎪
⎩

⎪⎪
⎨

⎧

=+

≠
=−

∈

∈
∑

hjTiDiskMAXVf

hjiDiskivf
jtimeDisk

commispldj

mi
dj

]))(([

)().(
)(

(4)

Also to find the mean time to complete of the application
or response time, we consider µcpui as the mean Cpu time
spent in state i and µdiski as the mean Disk time in that state ,
E[cpu(i)]= µcpui , E[disk(i)]=µdisk i and E[vi]=xi.
 In the equation 5, we have not regarded TCommunications. So
the following represent the expected mean time to complete
of the application.

As v(i).cpu(i) is a function of random variables v(i) and
cpu(i), so v(i).cpu(i), is a random sum, by using the
expression for random sums.

cpuiixicpuEivEicpuivE μ==)]([)].([)]().([

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

≠
=−

∈

∈
∑

hjMAXvf

hjXf
jtimecpuE

cpuimisplcj

mi
cpuiicj

)(.

.
)]([

μ

μ

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

≠
=−

∈

∈
∑

hjMAXvf

hjXf
jtimeDiskE

diskimispldj

mi
diskiidj

)(.

.
)]([

μ

μ

(5)

IV. AN EXAMPLE
An example of a component-based system that contains

Batch-sequential and Parallel styles is used to validate the
correctness of the above performance model. The
architecture of this system is shown in fig(4)a ,with a total of
9 components, in this architecture ,components in the dotted
oval run in parallel and are allocated on machine h, whereas
the components in the dotted rectangle run sequentially and
are allocated on the other sequential machines. We transform
those identified architectures into state model. Since the
component-to-state mapping can be many-to-one or one-to-
one mapping, the total number of state in the state model can
be different from the total number of component in the
architecture. State model of this system shown in fig(4).b.
Sequential components c1 ,c2 ,c3 ,c4 are mapped to separate
state s1,s2,s3,s4 ,and parallel components c5,c6,c7 are only
mapped to one state s5. Components c8,c9 are mapped to
separate states.

V1-74

2010 International Conference on Future Information Technology (ICFIT 2010)

(a)

(b)

Figure4 (a) Architecture view (b) state model

The data about the software architecture is summarized
in table1.The expected time spent by the application in

component i per visit is already known, this time can either
be obtained experimentally or may be known a priori. The
expected number of visits to each state can be computed by
solving the following system of linear equations, where qi is
the probability that the application starts in component i.
V(i)=qi +∑pki vk

In this software architecture, we presume a transition
between adjacent components are possible, and a transition
to any component in a parallel component set is basically to
the whole set. Therefore, the transition probability between
adjacent states is equal to 1.In the following; we calculated
the number of visits to state 1:

10111 =+=∑+= kVklPqV

TABLE1.EXAMPLE SYSTEM EXECUTION BEHAVIOR

No .of Machines 3 No.of components onMc2 3
No. of components on Mc1 4 No.of components onMc3 2
CPU time spent in components(in secs)

CPU time in component1 0.01 CPU time in component6 0.30
CPU time in component2 0.03 CPU time in component7 0.20
CPU time in component3 0.005 CPU time in component8 0.04
CPU time in component4 0.02 CPU time in component9 0.01
CPU time in component5 0.01

Disk time spent in components(in secs)
Disk time in component1 0.01 Disk time in component6 0.001
Disk time in component2 0.003 Disk time in component7 0.01
Disk time incomponent3 0.002 Disk time in component8 0.005
Disk time in component4 0.02 Disk time in component9 0.02
Disk time in component5 0.01

visit count to each of the state
No. of visit to state 1 1 No. of visit to state 5 1
No. of visit to state 2 1 No. of visit to state 6 1
No. of visit to state 3 1 No. of visit to state 7 1
No. of visit to state 4 1

Raring factor Time to synch

Rating factor(fcj) of CPUs
 1 Synch time for parallel

component 0.02

∑
∈

=+++==−

∑
∈

=+++==−

4
035/0)02/0002/0003/001/0(1)().()1(

4
065/0)02/0005/003/001/0(1)()()1(

i
idiskivfdjtimeDisk

i
iCPUivfcjtimeCPU

As the formula in the previous section shows, we use

MATLAB software to estimate the performance of this
system with 9 components .The CPU and Disk-time for
machine 1 are calculated as above, and service time required
for the other machines is summarized in table 1. Finally, the
total service time required for the application in this system
is 0.795 sec.

TABLE2. CPU TIME (IN SECS)

Service time spent in machine 1 0.1
Service time spent in machine 2 0.62

Service time spent in machine 3 0.075

 Time to service one request in this system 0.795

V. CONCLUSION AND FUTURE WORK
In this paper, we discussed an analytical approach for

performance evaluation of systems following Sequential and
Parallel styles. For this purpose, we first constructed a
DTMC model of the software system; this model provides us

V1-75

2010 International Conference on Future Information Technology (ICFIT 2010)

with the visit counts to different states and can calculate the
total service time (responsiveness) of the software system.
Architectural styles have a specific effect on quality
attributes and are used in designing software architecture .In
this paper ,we focused on performance evaluation in
sequential and parallel styles; Our future research includes
performance evaluation on the other styles, such as Fault
tolerance style and also Call and Return style.

REFERENCES
[1] K. Kant, ”Introduction to computer system performance

evaluation”, McGraw-Hill, 1992vol..32, dec.1993.
[2] L.Bass, P.Clements, R.kazman, “Software Architecture in

Practice”,SEI Series in Software Engineering, Addison-
Wesley,1998

[3] X.Wu, M. Woodside, “Performance Modeling from Software
components”, proceedings of the Fourth International Workshop
on Software and Performance, vol. 29, Jan. 2004, pp.290-301.

[4] S. Gokhalea, , W. Eric Wong, J.R. Horganc and S.Trivedi, “An
analytical approach to architecture-based software performance
and reliability prediction”, An International Journal of performance
evaluation,ELSEVIER, vol 58, Dec.2004, pp. 391-412,
doi:10.1016/j.peva.2004.04.003.

[5] S. Balsamo, V.D.N. Persone and P.Inverardi, ”A review on
queuing network models with finite capacity queues for software
architectures performance prediction”, An International Journal
performance evaluation, ELSEVIER, vol. 51, Feb. 2003, pp.269-
288, doi:10.1016/S0166-5316(02)00099-8.

[6] H. Hermanns, U.Herzog and J.P. Katoen, “Process algebra for
performance evaluation”, An International Journal Theoretical
Computer Science, elsevier vol. 274, Mar. 2002, pp.43-87,
doi:10.1016/j.peva.2009.07.007

[7] S. Emadi and F. Shams, “From UML component diagram to an
executable model based on Petri Nets”, Proc. the Third
International Symposium on transformation Technology,
Aug.2008, pp. 2780-2787, doi:10.1109/ITSIM.2008.4631945.

[8] M. sharafi, ” Extending Team Automata to Evaluate Software
Architectural Design”, Proc. 32nd Annual IEEE International
Computer Software and Applications Conference,(2008) , pp. 393-
400

[9] K. Khodamoradi, J. Habibi and A. Kamandi, “Architectural Styles
as a Guide for Software Architecture Reconstruction”,13 th
International CSI computer Science, Kish Island, Persian Gulf,
Iran, (2008)

[10] W. Wang, D. Pan and M. Chen, ”Architecture-based software
reliability modeling”, Journal of System and Software, vol. 79, Jan.
2006, pp. 132-146, doi: 10.1016/j.jss.2005.09.004.

[11] S. Ramamoorthy and S. P. Rajagopalan, “Component-Based
Heterogeneous Software Architecture Reliability(COHAR)
Modeling”, International Journal on Computer Science and
Engineering, vol. 02, 2010, pp. 1280-1285

[12] V .S. Sharma and K. S. Trivedi, “quantifying software
performance, reliability and security: An architecture-based
approach”, Journal of Systems and Software, elsevier, vol. 80,
2007, pp. 493-509, doi:10.1016/j.jss.2006.07.021.

[13] V. S. Sharma, P. Jalote and K. S. Trivedi, “Evaluating
Performance Attributes of Layered Software Architecture”,
Springer-Verlag Berlin Heidelberg, CBSE, LNCS, vol 3489, 2005,
pp.66-81, doi: 10.1007/11424529_5.

V1-76

2010 International Conference on Future Information Technology (ICFIT 2010)

