2012 International Conference on Software and Computer Applications

IPCSIT vol. XX (2012) © (2012) IACSIT Press, Singapore

Using Architectural Patterns to Improve Modularity

In Software Architectural Design

Sayed Mehran Sharafi'*,Morteza Ghasemi’ , Naser Nematbakhsh >

%3 Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University
"mehran_sharafi@iaun.ac.ir, > morteza.ghasemi@sco.iaun.ac.ir,” nemat@eng.ui.ac.ir

Abstract. Architecture plays an essential role to achieve software quality attributes. A wide variety of architectural
patterns and tactics are introduced in the literature to design software architecture. Modularity relates to quality
attributes such as maintainability, portability, reusability, interoperability and flexibility. Modularity also depends on
complexity aspects such as coupling and cohesion. There are several kinds of architectural patterns and tactics for
increasing cohesion and decreasing coupling to control complexity that software architects can utilize them. The major
question of architects is how to use these patterns and tactics. Hence, in this paper a method is proposed to select
appropriate architectural patterns and tactics for improving modularity in software architectural design. We conduct this
method in an applicant project and use component level metrics to measure coupling and cohesion of the architecture
design.

Keywords: Architectural patterns, Design patterns, Coupling and cohesion, Architectural tactics.

1. Introduction

Architecture plays an important role for an organization to meet its business objectives. Architecture is the
first product that developers and architects use to achieve software quality attributes [1]. Modularity is a
significant quality attribute while designing architectures of large systems [8]. Modularity relates to quality
attributes such as maintainability, portability, reusability, interoperability and flexibility [11]. Modularity is a
key factor in the success of a process because module decomposition is a way of managing the complexity of
a system. This means that the degree of modularity is proportional to the degree of how loosely coupled and
highly cohesive software elements of a system are. In addition, modularity indicates the degree of granularity
or decomposition that the architecture of the system has experienced [6]. Coupling is defined as the
connection between two modules. Two modules that have relatively few interdependencies are loosely
coupled. Cohesion refers to the degree of dependencies within the boundary of a module. The lower the total
coupling among modules, the higher level of design quality is obtained. Furthermore, cohesion should be as
high as possible to achieve better design quality [9]. In this paper a method is proposed for architects to
design modular architectures. The goal of this method is improvement of modularity by applying
architectural patterns and design patterns that increase cohesion and decrease coupling. We applied this
method in a case study and evaluated it by using component level metrics for measuring degree of coupling
and cohesion.

This paper is organized as follows: in Section 2, an overview of architectural patterns, tactics, design patterns
and relationships between them is discussed and a comparison between architectural patterns and design
patterns is presented. Section 3 describes useful architectural patterns and tactics to improve modularity.
Section 4 classifies architectural patterns and corresponding tactics to increase cohesion and decrease
coupling. In Section 5 design patterns which have positive effects on modularity are discussed. In section 6
the proposed method for software architectural design is explained in detail. In section 7 results of applying
the method on a case study is presented. Conclusions and a summary of future works are explained in
Sections 8.

+Corresponding author. Tel.: + (983312291111-2440);
E-mail address: mehran_sharafi@iaun.ac.ir

2. Architectural Patterns, Architectural Tactics and Design Patterns

A tactic is a design decision to achieve specified quality attributes. In fact, a tactic is a design option for
architects [1, 2]. Patterns designate the schema of basic structures of the software systems of organization as
they provide a set of predefined subsystems, their functions, governing rules, and recommendations for
building the relationship between them [5]. A set of principles and a coarse grained pattern that provides an
abstract framework for a family of systems is called architectural pattern [3]. An architectural pattern is
specified through a set of element types, a topological layout of the elements indicating their
interrelationships, a set of semantic constraints and a set of interaction mechanisms [reference]. In other
words, patterns encapsulate tactics. In fact, a pattern or a collection of patterns is/are designed to realize one
or more tactics which are chosen by the architects [1]. For example, reflection pattern that supports
maintainability will likely use both maintain a semantic coherence tactic and an encapsulation tactic [2]. But,
what is a design pattern? And what is the difference between an architectural pattern and a design pattern? A
design pattern provides a strategy for refining the subsystems, components of a software system, or the
relationships between them; and it describes commonly-recurring structure of communicating components
that solves a general design problem within a specific context [5]. Accordingly, an architectural pattern is
similar to a design pattern in that they both describe a solution to a problem in a particular context. The only
difference is the granularity at which they describe the solution. In a design pattern, the solution is relatively
fine grained and is depicted at the level of language classes. In an architectural pattern, the solution is
coarser grained and is described at the level of subsystems or modules and their relationships and
collaborations [10].

3. Architectural Patterns and Tactics for Improving Modularity

Coupling and cohesion are defined in terms of responsibility. A responsibility is an action, knowledge to be
maintained, or a decision to be carried out by a software system or an element of that system. Strength of the
coupling of two responsibilities is defined as the probability that a modification to one responsibility will
propagate to the other. Coupling is an asymmetric relation. In other words, the strength of coupling between
responsibility A and responsibility B is not necessarily the same as that between responsibility B and
responsibility A. If the relationships among elements are minimized, coupling is reduced. To achieve this
goal, we can minimize relationships among separated elements and maximize relationships among elements
in the same module. Maximizing the relationships among eclements in the same module is defined as
cohesion. In fact, cohesion expresses that if responsibilities A and B are collocated in the same module, then
the cost of changing is less. There are many tactics for improving degree of coupling and cohesion. Some
coupling tactic, reduce coupling from a responsibility to another and some others from a module to another.
The purpose of cohesion Tactics is to move a responsibility from one module to another, and to reduce the
likelihood of side effects to other responsibilities in the original module. There are eight software
architectural patterns for improving modularity. These patterns use coupling and cohesion tactics. Table 1
shows the correspondence between these patterns and the tactics they implement [2]:

Table (1): Architectural Patterns and Corresponding Tactics

Increase Cohesion Reduce coupling
g9 8 = = & s . =
S22 g 258 8 = 9 g = = =
Patterns SE2EE = o 7B - | 28R
§g3 285 P8 38 ez 3B 253
=83 <o @ E = s £ E| %3
Layers X X X X X X
Pipe-and-Filter X X X X
Blackboard X X ¢ ¢ ¢
Broker X X X X X X
Model-View- Controller X X X
Presentation- Abstraction- Control X X X X
Microkernel X X X X X
Reflection X X

4. Classification and Composition Patterns

In software architectural design, there are no constraints for selection patterns. For example, an architect may
use 3-tier pattern in the first architectural decision for security reasons, and in the next step, for
decomposition presentation tier, he/she may use MVC pattern. But there is a problem in combination
patterns. This problem is the inconsistency between them. For example, in because inconsistency between
quality attributes of Reusability and Performance, we cannot combine related patterns of these quality
attributes together. For choosing a pattern, there are a lot of factors such as type of problem, constraints and
experience of architects [3]. In [4], patterns are classified with regard to type of problem. Table 2 shows
these patterns.
Table (2): Classification of patterns with regard to type of problem

Problem From Mud to Distributed Interactive Adaptable Systems
Category Structure Systems Systems
Layers Broker MVC Microkernel
Pattern Pipes & Filters Pipes & Filters PAC Reflection
Blackboard Microkernel Layers

In [3] different patterns are classified according to different views. For example, patterns Client/Server, N-
Tier and 3-Tier are located in deployment view and layer pattern is located in structural view.

5. Design Patterns for Improving Modularity

In section 2, we discuss the differences between design patterns and architectural patterns. The following
table (table 3) lists important design patterns which have a positive influence on coupling and cohesion. The
patterns should therefore keep the coupling between software elements low, and each software element as
cohesive as possible [7, 8].

Table (3): List of Design patterns for improving modularity

Design Pattern
Decorator Cohesive Modules Module Fagade
Code to an Interface Abstract Factory Published Interface
Decorator Factory Acyclic Relationships

6. Method

In proposed method, we describe how to use related architectural patterns and design patterns to achieve
modularity in architectural design. This method proposes a variety of architectural patterns and design
patterns regarding granularity and type of the problem in each of the architectural design stages. The main
point is how and when to use architectural patterns and design patterns.

This method includes a hierarchy of architecture design decisions that decomposes a system from a coarse
grained design into a fine grained one. Therefore, in accordance with what discussed in section 3, at the
first stages of design, we should use architectural patterns and in the next other stages we should use
appropriate design patterns. The other issue is how to choose and combine architectural patterns. In this
method, architect should choose a deployment view pattern for the first decision of the design because
these patterns decompose the system in a physical way. In section 3, three patterns which are client/server,
n-tier and 3-tier introduced as the deployment patterns. In the next stage, it is recommended to architects
that with regard to the type of the problem in hand adopt one of the changeability improvement patterns
mentioned in Table 2. In the next stage, regarding the details of the use cases, functional requirements are
allocated as the functional modules to the components which have extracted by applying architectural
patterns. Afterward, by considering types of interdependencies among functional modules, we use
appropriate design patterns which introduced in Table 3 for enhancing modularity. We iterate these
operations for all the modules which need to be decomposed. In the following section, we discuss this
method.

6.1. Method Steps

o Decompose system by choosing one of the deployment view patterns
e Decompose components obtained from the previous stage, by choosing one of the architectural
patterns in table 1 and with regard to the type of problem

o Allocate functionality from the use cases to components obtained from the previous stage

e Choose one of the functional modules (subsystems) and decompose it by choosing one of the design
patterns in table 3.

e Repeat the previous stage for every module (subsystem) that needs further decomposition.

Figure 1 shows main steps of this method.

. Select a deployment view patteer

Gelect a architectural pattern with regard to type of problenD

CAIIocate functional module>

- (Select the functional modu@

Yes Gelect a design pattern for decomposing selected module)
¥ No
~@®

is there the module to decompose?

Fig. 1: main steps of proposed method

7. Case Study: Applicant Management System

Applicant Management System is a software product that can use by different organizations. The goal of this
system is to meet people's demands. This system is performed based on the Web. People send their requests
by this system. For sending a request, first must register personal information and specification of requests.
In the next step, his/her requests will be considered and a letter will be issued for his/her requests. With
regard this system is a software product, it needs to be extendable and changeable. Therefore, modularity is
one of major quality attribute for this system. Functional requirements or functional modules (subsystems) as
follows:
e Lectters management system e User management system

e Applicant management systems e Persons management system

7.1. Applying the proposed method

First step: we apply Client/Server pattern.

Second step: Type of problem is Interactive. We use MVC pattern. These patterns reveal three software
clements; the client part which includes the view element and the server part which includes the model
clement, and the controller element.

Third step: We decompose model component and allocate to it subsystems User management system, letters
management system, Applicant management systems, and Persons management system. The following
figure (figure 2) shows conceptual architecture up to this step.

1

e Model

| Persons Managment System |

[. |

~ ——

- - fE— Client
“*|Front Control

| User Managment System || .. View

! " |

[]
Applicant Managment System

Fig. 2: Conceptual Architecture of Applicant Management System

Forth step: In this step, with regard types of dependency (incoming or outcoming) between subsystems, we
decompose them by using design patterns in table 3. For example, we decompose User Management System
because of its imperative role in the system with several incoming dependencies. We apply the Module
Facade Pattern and Cohesive Module Pattern. The output of this step concluded in two child modules: User
Manager and Security Manager. Similarly, we can repeat the previous stage for decomposing other

subsystem that needs further decomposition. For measuring coupling and cohesion, we use component level
metrics that are provided in [6]. These metrics are described in table 4. Table 5 shows these metrics value for
applicant project.

Table (4): List of Metrics for Measuring Coupling and Cohesion
Metrics Description
NCOMPUC | This metric measures how many components share the same responsibilities by looking at the sequence
diagram for each use case and count the components involved
NUCPCOM | By looking at the use cases of the system a component is involved in, we can see the
responsibilities for that component
CBCOM This metric counts all the dependencies that one component has to other components

Table (5): Metrics values for Applicant Management System

Component Use cases NCOMPUC | NUCPCOM | CBCOM

Manage user 2
Login 2

User management system Tog out 3 11 4
Check identity 1

Persons management system | Manage person 3 7 3

Applicant management Send request 4 6 4
system Check request 4
Export letter 5

Letters management system Eecewe i > 4 3
eceive answer 5
Follow Up letter 5

Front controller 9 4

8. Conclusions and a Summary of Future Works

In this paper, we determined the list of Architectural tactics, architectural patterns and design pattern for
improving modularity. We categorized architectural patterns based on tactics they implemented, and the type
of problem. We classified some other patterns such as client/server in deployment view, so that architects
could use them in the first architectural design decision and also because they decompose the system at high
levels and usually physically. We presented a novel approach to improve modularity in architectural level. In
particular, we proposed how and when architects could use architectural patterns and design patterns together
in this method. We applied the proposed method in applicant management system and then measured the
degree of coupling and cohesion with metrics such as NCOMPUC, NUCPCOM and CBCOM in it.

In the proposed method, only consistency modularity quality attributes and corresponding architectural
patterns and design patterns were discussed. In future work we can optimize this method by paying attention
to other quality attributes, especially opposite quality attributes such as performance and availability.

Reference:

[1] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, vol. 2. Addison Wesley, Boston, 2003

[2] F.Bachmann, L. Bass, R. Nord. Modifiability Tactics. Technical report,2007

[3] www.msdn.microsoft.com/en-us/library/ec658117.aspx

[4] H. Almari. Investigation of the relationship between software patterns and quality attributes. Research Project,2009

[5] F. Buschmann. Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. Chichester, NY: Wiley
and Sons, 1996

[6] P. Johan, H. Holmberg. On the Modularity of a System. Master's thesis, Center for technology Studies,2010

[71 E.Gamma, R. Helm, Johnson, R., M, J. Vlissides, Design Patterns Elements of Reusable Object-Oriented
Software, vol. 2400. Addison Wesley, Harlow, 1995.

[8] K. Knoernschild. java Application Architecture: Modularity Patterns with Examples Using OSGi, 2012

[9] T, S. Albin, Art of Software Architecture, vol. 1. John Wiley And Sons Ltd, New York , 2003

[10] www.shapingsoftware.com/2008/08/10/architectural-styles-patterns-and-metaphors. 10 August 2008

[11]D. Galin. Software Quality Assurance From Theory to Implementation, vol. 1. Addison Wesley, Harlow, 2003,

