
Formal Specification and Evaluation of Components Interaction in
Software Architectures

Mehran Sharafi 1, Fereidon Shams Aliee 2, Ali Movaghar 3

1 Faculty of Engineering, Azad Islamic University of Najafabad, PhD student ,Tehran Science and Research branch, Iran
2Faculty of Computer Engineering, Shahid Beheshti University, Tehran, Iran

3 Computer Engineering Department, Sharif University of Technology, Tehran 11365, Iran
Mehran_sharafi@iaun.ac.ir, f_shams@sbu.ac.ir,Movaghar@sharif.edu

Abstract

Software Architecture refers to a high-level specification of structures and behaviors of software components. This
specification can be used for evaluating non-functional attributes, even before software implementation, and therefore it results in
early detection and correction of defects. In this way, formal methods are more rigorous and systematic and make it possible to
automatically verify different aspects of software architectures. In this paper we introduce a framework to formally specify and
evaluation of Software Architectures. The frame work includes an algorithm for transforming Software Architecture described in
UML to a powerful and formal model, called Team Automata. The framework also proposes a performance model over obtained
formal descriptions. This model is used for specifying, evaluating and enhancing the architecture of a Web-Service software,
under flash-crowd condition and the results of analysis and experiments are presented.

Keywords: Software Architecture, Team Automata, Component Interaction, Performance.

1. Introduction

Software Architecture (shortly SA) in early development phases, represents models which
contain basic structural components of software and their interactions; on the other hand it contains
both static structure and dynamics of system behavior. In spite of very high level of abstraction of
architectural models, they comprise important design features which could be used to anticipate
functional and non-functional attributes (like performance, security, etc.) of software. In the past
several years, many methods for specifying and evaluating SA have been proposed, and their primary
goal is to facilitate architectural decisions making; for example to choose a suitable architecture among
several architectural alternatives, one that best fit to functional and non-functional requirements of
relevant software.[21,20,5,4]
Some of these methods are base on formal models, some are language-based (Architectural Description
Languages-ADLs) and the others like UML propose visual descriptions. Each of mentioned methods
has their own benefits and drawbacks and making use of them depends on the purpose of architect from
describing architecture.

ADLs are suitable for specifying hierarchical structures of components and also interaction
between them. Moreover they have tool supports. On the other side, UML diagrams are highly
understandable and are widely used by software engineers. UML 2.0 specially has significant
extensions for specifying SA. However, the essential drawback of all informal methods versus formals
is that their specification power is often not general enough to preserve all the interaction properties
which might arise through components composition. Additionally the verification and validation within
an informal framework usually supports only a few fixed set of properties. But formally specifying
software architectures make a highly formal and general foundation which could be used to verification
of different aspects which can be deduced from overall structure and interaction between components.
Finite state machines (FSMs), labeled transition system (LTSs) and Petri nets have been widely used in
the literature for this purpose [2, 3, 4,5,6,7, 22].

However these models are designed for modeling component interaction and are often unable
to describe the interconnection structure of hierarchical component architecture. In this work we
introduce a formal framework to specify and evaluate software architectures and try to overcome usual
limitation of common formal models. Within the framework we have proposed an algorithm to
transform SA behaviors described in UML 2.0 to an automata based model called team automata [8].
In this manner a rigorous foundation for further activities (e.g. verification of non-functional
properties) have been developed. Beside the formal descriptions, we proposed a performance model
which used to evaluate performance aspects of software architecture. Thus our framework could be
used by software architects to choose suitable architecture among many alternatives and/or help them
to make changes to an architecture to fit desired performance requirements. This paper organized as
follow: After Introduction, in Section 2 a comparison is made between some extended automata-based
models, and their abilities and weakness to specify components interaction are described. In this
section also Team Automata, as a selected model, will be introduced and some definitions applied in
our algorithm explained. In Section 3 we introduce overall framework, transformation algorithm and
our performance model in detail. In Section 4, transformation algorithm and performance model will be

applied on two alternative architecture of a web-service software as a case study and the results will be
presented. Section 5 refers to conclusions and future works.

2. Using automata-based models to specify SA.

As we mentioned before, automata-based models have been used in the literature to specify
dynamics of software architectures. However some of extended automata are more consistent for this
issue because they designed for modeling the interaction between loosely coupled components in
systems. For example Input/Output Automata (shortly IOA) [9] as a labeled transition system provide
an appropriate model for discrete event systems consisting of concurrently operating components with
different input, output and internal actions. IOA can be composed to form a higher-level I/O automaton
and thus form a hierarchy of components of the system. Interface Automata(IA) [10, 11] are another
extended automata model suitable for specifying component-base systems, which also support
incremental design. Finally, Team Automata [8] is a complex model designed for modeling both the
conceptual and the architectural level of groupware systems.

Common feature of these automata models is that "actions" are classified in 'input', 'output'
and 'internal's, such that internal actions can not participate in components interaction. This feature has
made them powerful to specify interaction between loosely coupled and cooperating components. It is
clear that there are many similarities between application domains of the mentioned models and the
literature of Software Architectures. Thus applying these models in SA area must be greatly taken in to
consideration by software engineers. In [12] we also made a detailed comparison between these models
and described why we have selected Team Automata for our framework.

2-1. Team Automata

Team Automata model was first introduced in [13] by C.A.Ellis. This complex model is
primary designed for modeling groupware systems with communicating teams but can be also used for
modeling component-based systems [14]. In this section some definitions of TA literature are briefly
described. These definitions have been used in the algorithm proposed in this paper. Readers are
referred to [8] for more complete and detailed definitions.

Let Ί Ν⊆ be a nonempty, possibly infinite, countable set of indices. Assume that Ί is given
by Ί = {i1, i2, . . .}, with ij < ik if j < k. For a collection of sets Vi , with i ∈ Ί, we denote by ii VΤ∈Π
the Cartesian product consisting of the elements (vi1, vi2, . . .) with vi∈ Vi for each i ∈ Ί. If
vi∈ Vi for each i ∈ Ί, then Τ∈Π i vi denotes the element (vi1, vi2, . . .) of ii VΤ∈Π . For each j ∈ Ί and

(vi1, vi2, . . .)∈ ii VΓ∈Π , we define projj ((vi1, vi2, . . .)) = vj. If ⊆≠ ζφ Ί, then projζ ((vi1, vi2, . . .))

= jj vζ∈Π .

For the sequel, we let S = {Ci | i∈ Ί} with Ί Ν⊆ be a fixed nonempty, indexed set of component

automata, in which each Ci is specified as ()()i
i

ioutiinpii IQ ,,,,, int,,, δΣΣΣ , with

int,,, ioutiinpii ΣΣΣ=Σ UU as set of actions. ii Σ=Σ Γ∈U is the set of actions of S and

ii QQ Γ∈Π= is the state space of S.
Component automata interact by synchronizing on common actions. Not all automata sharing

an action have to participate in each synchronization on that action. This leads to the notion of a
complete transition space, consisting of all possible combinations of identically labeled transitions.

Definition 1. A transition QQqaq ×Σ×∈′),,(is a synchronization on a in S if for all i∈ Ί, (proji(q),

a, proji(q′)) iδ∈ or proji(q) = proji(q′), and there exists i∈ Ί such that (proji(q), a, proji(q′)) iδ∈ .

 For Σ∈a ,)(Sa∆ is the set of all synchronizations on a in S. Finally)()(SS aa ∆=∆ Σ∈U
is the set of all synchronizations of S.

Given a set of component automata, different synchronizations can be chosen for the set of
transitions of a composed automaton. Such an automaton has the Cartesian product of the states of the
components as its states. To allow hierarchically constructed systems within the setup of team
automata, a composed automaton also has internal, input, and output actions. It is assumed that internal
actions are not externally observable and thus not available for synchronizations. This is not imposed
by a restriction on the synchronizations allowed, but rather by the syntactical requirement that each
internal action must belong to a unique component:

 S is composable if φ=ΣΣ
Τ∈

j
j

i UIint,
 for all i∈ Ί.

Moreover, within a team automaton each internal action can be executed from a global state
whenever it can be executed by its component at the current local state. All this is formalized as
follows.

Definition 2. Let S be a composable set of component automata. Then a team automaton over S is a
transition system ()()IQ outinp ,,,,, int δΣΣΣ=Τ , with set of states ii QQ Γ∈Π= and set of

initial states ii II Γ∈Π= , actions ii Σ=Σ Γ∈U specified by int,int ii Σ=Σ Γ∈U ,

outiiout ,Σ=Σ Γ∈U , outinpiiinp ΣΣ=Σ Γ∈ \)(,U and transitions QQ ×Σ×⊆δ such that

)(S∆⊆δ and moreover)(Saa ∆=δ for all intΣ∈a .

As definition 2 implies, one of the important and useful properties of TA compared with other
models is that there is no unique Team automata composed over a set of component automata, but a
whole range of Team Automata distinguishable only by their synchronizations can be composed over
this set of component automata. This feature enables Team automata to be architecture and
synchronization configurable, moreover, makes it possible to define a wide variety of protocols for the
interaction between components of a system.

Tow other definitions which effectively used in our algorithm are ''subteams" and

"communicational actions" that we briefly introduce. Reference,[8] supports detailed definitions.

Definition3. A pair Ci,Cj with i,j Γ∈ , of component automata is communicating (in S) if there exist an

()extjextia ,, ΣΣ∈ U such that () ()outiinpjoutjinpia ,,,, ΣΣΣΣ∈ IUI .

Such an a is called a communicating action (in S). By comΣ we denote the set of all communicating
actions (in S).

Definition 4. Let ()()iioutinpii IQ Γ∈Γ∈ ΠΣΣΣΠ=Τ ,,,,, int δ be a team automaton over the

composable system S and let Γ⊆J . Then the subteam of T determined by J is denoted by

()TSUBJ and is defined as () ()()jJjJjoutjinpjjJjJ IQTSUB ∈∈ ΠΣΣΣΠ= ,,,,, int,,, δ , where:

int,int, jJjJ Σ=Σ ∈U ,

outjJjoutJ ,, Σ=Σ ∈U ,

outJinpjJjinpJ ,,, \)(ΣΣ=Σ ∈U and for all jJjJa Σ=Σ∈ ∈U ,

() () { }()JjCproj jaaJaJ ∈∆= Iδδ]2[.

The transition relation of a subteam of T determined by some Γ⊆J , is obtained by

restricting the transition relation of T to synchronizations between the components in { }JjC j ∈ .

Hence in each transition of the subteam at least one of the component automata is actively involved.

This is formalized by the intersection of () ()aJaJ proj δδ]2[= with { }()JjC ja ∈∆ , for each action

a, as in each transition in this complete transition space at least one component from { }JjC j ∈ is

active.

3. Proposed Framework.

In this section, we describe an extension made to UML to become consistent and could be
used as our input model. Then we introduce an algorithm to transform extended UML models of
software architecture to formal descriptions of Team Automata we called this algorithm UML2TA.
Finally a performance model is described over TA, to evaluate performance aspects of software
architecture. Flowchart of Fig.1. shows overall steps of our framework.

3-1. Input Model

UML diagrams are highly understandable and are widely used by software developers. New
version of UML (UML 2.X) have enhanced notations for specifying component-based development
and software architectures. [1, 15]
Since our target model-TA, is very formal, direct translation of UML to TA is problematic. Therefore
we first provided formal definitions of UML model elements to create a consistent input model. Static
structure of software architecture is described with UML 2 Component Diagram, while the interaction
between components is described by Sequence Diagrams. Our input model is explained as follow:

A UML Component is defined as uComponent = (Name, PI, RI), where Name is a string,
denotes name of the component; PI is a finite set of provide interfaces and RI is a finite set of required
interfaces [1] of the component (One can specify a port_id for each interface to identify related port;
we ignore definition of ports in our algorithm). Sets, RI and PI are disjoint for a component; however
PIs an RIs of two component could have common elements. Each interface has a finite alphabet called
M which contains names of messages it can exchange with other interfaces. (Messages could be
considered as requests (or responds) to a method call through an interface of a component [1]).

A UML Connector is defined as uConnector = (C1, I, C2), where: C1 and C2 are names of
components which are both ends of the connector and I is name of the interface involved the
connection. If I be the name of a required interface (or a provide interface) of both C1 and C2 then type
of the connector is 'delegate'. However if I be the name of a required interface of C1 and a provide
interface of C2 then type of the connector is assembly. (We assume that designers or architects follow
these constraint at the time of creating UML models).

A UML Component Diagram is defined as uCD= (Components, Connectors), where
Components is a finite set of uComponents and Connectors is a finite set of uConnectors.

Yes

No

Update the architecture or try
another one

UML
Sequence
Diagrams

UML Component
Diagram

Driving initial state model of each Component Automata, based on domain expertise

Completing transition relation of each CA using UML2TA (phase 1)

Creating a subteam for each sequence diagram using UML2TA (phase 2)

Calculating performance of each subteam using the proposed performance model

Input: Structural
and behavioral
models of SA.

Performance is
acceptable?

Choose the architecture

A UML Sequence Diagram is corresponding to a system scenario and is defined as
uSD=(Components,Stimuli), where components is the set of components participating in the scenario
and Stimuli is a vector of messages, according to the order of the time in the Sequence Diagram. A
message passing is defined as uStimulus=(C,a), where C is a uConnector and a is the name of message
passed through the interface corresponding to C (MICa ..∈).

3-2. UML2TA - an algorithm for transforming UML description to TA

As mentioned before, SA description contains a UML component diagram (CD) specifying
structural feature of SA and a finite set of Sequence Diagram specifying scenarios of system i.e.
components interactions. First step in UML2TA is that each component in CD, is considered as a
component automata Ci in set { }liCS i ∈= (Suppose, g:CD.Components→S is a one-to-one
correspondence which maps each software component to a component automata Ci). Initially, Ci is
manully derived from the informal behavioral description of the component, based on domain
expertise; to do this step one can use method introduce in [9]; The goal of this step is to obtain all the
possible states in each component automata, not necessary all the transition. Each Ci can be incomplete
in trams of transitions. Now we have ()iiiii IQC ,,, δ∑= , where Ii is complete and the rest may
not. Names of internal actions of a component (if there are any) must be different from all actions of
other component for satisfying 'composability condition' of component automata [8]).

In order to complete the sets of input action (inpi,∑) and output actions (outi,∑) of each Ci
we use CD as follows:

For each Component = (Name, PI, RI), ComponentsCDComponent .∈ , which
g(component) = Ci ,do as following:

MPIComponentinpiinpi ..,, U∑=∑

MRIComponentoutiouti ..,, U∑=∑

In order to complete iδ for each Ci, we find out for each Stimuli of form, ((Ci, I, Cj),a) in
each SD, which states of Ci and Cj belongs; then according to precondition and effects of action a in
both Ci , Cj , if a causes a transition from q to q/ in Ci ()iQqq ∈′, , and a transition from s to s/ in Cj

()jQss ∈′, then do as following:

),,(qaqii ′= Uδδ ,),,(sasjj ′= Uδδ

Now we have set { }Γ∈= iCS i , including all the component automata of the system.

According to the definition of TA (def. 2), we can compose many team automata over S distinguishable
by their transition relation, where, each of them is corresponding to a specific components interaction.
However, in UML, components interaction is specified by a set of scenario and each scenario could be
described by a sequence diagram, therefore we must again use the set, SD to define a specific team
automata or a set of subteams, over s. In this way if team automata of the system is defined as

()),,,(int,,, iliioutiinpiili IQ ∈∈ ∏∑∑∑∏= δτ UU then we model each sequence diagram SDk in

SD as a subteam of τ ; In other word, each SDk is modeled as ()τ
kJSUB and lJk ⊆ ; where Jk

contains the indices of a subset of component automata participating in the scenario corresponding to
SDk, and:

() ()()jJjJJoutJinpJjJjJ IQSUB
kkkkkkk ∈∈ ∏∑∑∑∏= ,,,,, int,,, δτ

Now we have all the above set except for kJδ . To define
kJδ we do as follow:

Since, for each SDk.Stimuli=((Ci,I,Cj),a) ,message a is sent from Ci to Cj, thus, in our TA
model, Ci, executes a as an output action and Cj executes a as an input action; therefore a is a

communicating action [8] and we can model the Stimuli as a synchronization on a. So, to define

transition relation of ()τ
kJSUB , we do the following for each Stimuli of form ((Ci,I,Cj),a):

),,(qaq
kk JJ ′= Uδδ

where iii qprojaqproj δ∈′))(,),((and jjj qprojaqproj δ∈′))(,),((such that,

outia ,Σ∈ , inpja ,Σ∈
Since each Stimuli, introduces message passing from a required interface of a component to

provide interface of another component, therefore the connection between tow component is an
assembly connection [1]. Hence, the message is consumed by the destination component and no longer
exists for other synchronization outside of the subteam (or team). This explanation is different from
definition of team automata in which output actions of all component automata will be output actions
of the team over them. So we use hide operator [8] to hide those output actions from out side of the
subteam. Therefore our model for SDk is defined by the following formulas:

()()τ

kcomkJ JSUBhide
,∑

Where comkJ ,∑ is the set of communication action of sub team. This suggestion could also be useful

when we want to consider each subteam as a component automata and use it as a building block in an
incremental design issue.

Tables 1 and 2, are corresponding to the tow phase algorithm UML2TA for translating UML
diagrams to a TA specification.

Table1- Phase 1 of UML2TA to create the set of Component Automata S.

Inputs:
1. A UML Component diagram, D=(Components,Connectores),|CD.Components|=m

2. SD[] is the set of UML sequence diagrams, |SD|=k , SD[i]=(Components, stimui) for each i, ki ≤≤1 . SD[i].Components is the set of all

components interacting within SD[i] and SD[i].stimuli is an array of UML stimulus of form ((C1,I,C2),a) .
Outputs:
1.S[] is the set of component automata where S[i](=Ci), is component automaton indexed by i, S[i]=(Q,SIGMA,DELTA,I)
2. g is a one-to-one correspondence between CD.Components and a set of indices [1..m].
Translate(CD,SD):S

i ← 0

g ← φ

while CD.Components φ≠ do begin

 i ← i+1

 uC∈ CD.Components

S[i] ← initial state model of uC

(){ }iuCgg ,+←

 while uC.PI φ≠ do begin

 uPI∈ uC.PI

 S[i].SIGMA.Inputs ← uPI.M

 uC.PI ← uC.PI - {uPI}

 end

 while uC.RI φ≠ do begin

 uRI∈ uC.RI

 S[i].SIGMA.Outputs ← uRI.M

 uC.RI ← uC.RI-{uRI}

 end

 CD.Components ← CD.Components-{uC}

end
for i:=1 to NUMBER_OF_SDs do begin
 for j:=1 to SD[i].NUMBER_OF_STIMULUS do begin
 if SD[i].stimuli[j].a causes a transition from state q to atate q� in
 component SD[i].Stimuli[j].C.C1 and also it causes a transition from
 state s to s� in component SD[j].stimuli[j].C.C2 such that, g(C1)=1
 g(C2)=j then begin

 s[i].DELTA ← s[i].DELTA+{(q,a,q�)}

 s[j].DELTA ← s[j]>DELTA+{(s,a,s�)}

 end //if
 end
end
End Translate.

Table2- Phase 2 of UML2TA to create Subteams.

Input:

1. SD[] is the set of UML sequence diagrams, |SD|=k , SD[i]=(Components, stimui) for each i, ki ≤≤1 . SD[i].Components is the set of all

components interacting within SD[i] and SD[i].stimuli is an array of UML stimulus of form ((C1,I,C2),a) .
2. .S[] is the set of component automata where S[i](=Ci), is component automaton indexed by i,
Output:
1. Team Automata of the system ,T=(Q,SIGMA,DELTA,I).

2. SUB[] is the set of Subteams , such that SUB[i] is correspond to SD[i] and SUD[i]=(Q,SIGMA,DELTA,I), ki ≤≤1 .

CreateSubTeams(SD,S):SUB
For i:=1 to NUM_SD do begin //Number of sequence diagrams

 J ← indices of all components in SD[i].Components

 SUB[i].Q ← Cartesian product of s[j] for all j∈ J

 SUB[i].SIGMA ← Union of actions of component automata S[j], for all j∈ J

//composability should be satisfied

SUB[i].I ← Cartesian product of S[i].I for all j∈ J

End

T ← CREATE_TEAM(SUB); // includes all the Subteams that would be completed as follow

for i:=1 to NUM_SD do begin

 temp1 ← SUB[i].I.CurrentState

 for j:=1 to SD[i].NUM_STIMULS do begin
 If j<>1 then begin

 r ← g(SD[i].Stimuli[j].C.C1)

 if find a transition SGM in S[r] such that:
 (s[r].SGM.q1=proj(r,temp1)
 and S[r].SGM.a=SD[i].Stimuli[j].a //q1 is a_enabled
 and s[r].SGM.a in S[r].SIGMA.Outputs)

 then Proj(r,temp2) ← s[r].SGM.q2

 else Error
 end

 r ← g(SD[i].Stimuli[j].C.C2)

 if find a transition SGM in S[r] such that:
 (s[r].SGM.q1=proj(r,temp1)
 and S[r].SGM.a=SD[i].Stimuli[j].a //q1 is a_enabled
 and s[r].SGM.a in S[r].SIGMA.Inputs)

 then Proj(r,temp2) ← s[r].SGM.q2

 else Error

 NEWSGM ← MakeString(temp1,SD[i].stimuli[j].a,temp2)

 SUB[i].DELTA ← SUB[i].DELTA+{NEWSGM}

 Temp1 ← temp2

 end
end
End_ CreateSubTeams

3-3. A performance model over TA specification.
Until now we develop a formal foundation for software architecture which can be used for

evaluating several attributes (For example in [23], [24] TA have been used to security analysis of
groupware systems). In this section we introduce a model to evaluate performance of software
architecture described by team automata. In this way two features have been considered for evaluating
performance:

a) Performance specifications of components communication. This feature depends on a variety of
factors e.g. components deployment, centralization/distribution, network quality and so on. This
information are not explicitly given in the architecture descriptions; to obtain such information, one can
use data collected from similar existing systems. Newer versions of UML facilitates specifying
performance data within architectural diagrams [15] our UML definitions of Connectors (Section 3)
also allow to involve communication delay of each connection (as an extension suppose, each
connector could be considered as a quadruple (C1, I,C2,d) where d is the corresponding delay). In our
performance model, we consider a delay for each synchronization within a subteam.

b) The granularity of the performance analysis. Performance can be analyzed either behavior-
dependent or behavior-independent. For example, performance can be defined by processing time of
the entire component or processing time of each service invocation in the component. In our model
performance is considered at the service level. Since in our model, service requests to a software
component assume to be input actions to corresponding component automata, we assign a processing
time to each input action. (These data are again obtained from existing similar systems). According to
suggestions a and b, we can extend team automata models to include performance information as
follows:

For each Component Automata a processing-time function +→∑ RP inpi,: and a delay

function +→′ RP iδ: is defined as follow:

P= {() inpiara ,, ∑∈ , r is the processing time corresponding to action a}

P�= {() id δθθ ∈, , d is the delay corresponding to transitionθ }

We now model each Component Automata in the architecture with the extension of

performance model as follow:

),),,),,,(,((int,,, iiiiioutiinpiii PPIQCP ′∑∑∑= δ

Delays of transition within a component could be ignored (comparing with communication delay
between components, especially for distributed components). If we assume components interactions
synchrony and sequential then we can consider a whole subteam as a complex server [25] whose mean
service time is equal to summation of service time of input actions (those which are synchronized) plus
all synchronization delay in the sub team. Thus if

kJi δθ ∈ be the ith synchronization in ()τ
kJSUB

and comJk ,Σ be the set of all communicating action in ()τ
kJSUB and comJ k

A ,Σ⊆ (,

{ }maaaA ,...,, 21= ,
kJm δ=) be the set of communication actions which are synchronized within

()τ
kJSUB then we have:

() ()()∑
=

+′=
m

i
ii

k

aPP
1

1 θ
µ

, Where
kµ

1
 is mean service time of scenario k (correspond to SDk) which has been modeled by

subteam, ()τ
kJSUB .

Now suppose that software has k independent scenario whose probability of request by users

is fk and λ be total input rate in of requests to the system. (When a request arrives while a previous
request of the scenario has not been answered, the new request will be queued). The system response

time corresponding to architecture under evaluation is equal to
µλ −

= 1R ; where µ is total service

rate and is calculated by the following formulas:

∑
=

=
k

i i

if
1

1
µµ

4. An application system example

We evaluated UML2TA method on a part of a web-service software architecture. In this
example we have a component diagram describing major components and connectors (Fig 2), and a
sequence diagram (Fig 3) describing components interaction corresponding to a scenario where some
end user requests the web content available from /ping URL (This system have been used as a case-
study in [17] in a different scope). We use extension defined in [18] for sequence diagrams.

Fig2 .Component Diagram of a part of Web-Service Software.

Fig.3. Sequence Diagram specifying components interaction for '/ping' Scenario.

The behavior of components is briefly discussed as follow. The HttpTransponderHarness

component is responsible for all client communication (both request receipt and response generation).
The component HttpHeaderHarness interprets header of the message and identify type of request.
Finally PingHarness generates response HTML text that will eventually echo the request text back to
the client in their browser. In the region 1 of Figure 1, a network client sending a HTTP request for a
'/ping' requests to server socket that the HTTPTransponderHarness is listening with. The component
allocates a new thread from its thread pool that collects the request data from the client socket once
data is received it sends a message to HttpHeaderHarness to parse the header of the message. In the
region 2, if there is a problem with the HTTP header, HttpHeaderHarness, delivers the request back to
the space, marked up to trigger an error processing (not shown in diagram) to take the request, and

generate an appropriate error response for delivery back to the requesting client. The request in this
scenario, however, has a valid HTTP header and indicates that the intended resource desired from the
HTTP request is identified by the '/ping' URL fragment. In the region 3, PingHarness component
receives a message identifying a /ping request, then it generates response HTML text that will
eventually echo the request text back to the client in their web browser. Region 4 is where the
HttpTransponderHarness receives a message from PingHarness, and transmit the response content of
the request back along original client socket for this request in a newly allocated thread pool.

4-1. TA models of the Web-Service Software Architecture.

According to UML2TA, First, we manually model each software component with a
Component Automata from informal behavioral descriptions which briefly mentioned.

Table 3 describes Component Automata of each software component.

Table3. CA models of Web-service Software components .
Component Automata model of
HttpTransponderHarness:

Component Automata model of
HttpHeaderHarness

Component Automata model of PingHarness

Actions:
Input actions : /ping_req , delivery.
Output actions: /ping_resp , header_inspect.
Internal action: new_thread_allocation.

State Variables:
Process_Input :{0,1}
Prepare_resp: {0,1}

Transitions(per actions):
 /ping_request:
 Effect: process_inp := 1;
delivery:
 Effect: prepare_resp := 1;
/ping_resp:
 Preconditions: prepare_resp:=1;
 Effects: prepare_resp:=0;
/header_inspect:
 Preconditions: process_inp:=1;
 Effects: process_inp := 1;

Actions:

Input actions: header_inspect;
Output actions: proc_ping;
Internal action: none;

State Variables:

Identify_request_type : {0,1};

Transitions: (per actions)

header_inspect:
 Effects: Identify_request_type := 1;

proc_ping:
 Preconditions: Identify_request_type := 1;
 Effects: Identify_request_type := 0;

Actions:
Input action: proc_ping;
Output action: delivery;
Internal action: None;

State Variables:
Generate_response:{0,1};

Transitions (per actions):
Proc_ping:
 Effects: generate_response := 1;
delivery:
 Preconditions: generate_response := 1;
 Effects: generate_response := 0;

If we have all scenarios of the system then we can model TA of overall system; However

according to algorithm UML2TA, for each scenario we can create a subteam; Therefore if components
HTTPTransponderHarness, HttpHeaderHarness and PingHarness be corresponding to component
automata C1, C2 and C3 respectively, then we have:

() ()

∑∑∑= ∏

∈ Jj
jJoutinpJJ IQSUB ,,,,, int δτ where { }3,2,1=J , ∏

∈

=
Jj

jJ QQ ,

{ }reqpinginp _/=∑ ,

{ }deliverypingprocinspHeaderresppingout ,_,_,_/=∑ ,

{ }threadnew_int =∑ ,

() () () () () (),,,,,,,,,,,,,,,,,,{ grwpiwwpiwIwwIwgrwwwwwQJ ′′′′′′′′′′=

 () () () () () ()},,,,,,,,,,,,,,,,, wIpowIpogrwpowwpogrIpiwIpi ′′′′′′′′′′

and briefly we have:

() ()() () ()(),,,,_/,,,,,,,_/,,,{ wIwinspHeaderwwpiwwpireqpingwwwJ ′′′′′′′′′′′=δ
() ()()},,,_/,,,..., wwwresppingwwpo ′′′′′′

4-2. Performance evaluation and architectural changes

In Section 4-1 UML2TA was applied on Web-Service Software Architecture and relevant
component automata and subteam was generated. In this section we represent results of applying
UML2TA on a different version of previous architecture, and show how an architect can choose more
suitable architecture regarding over load condition using our framework. Before that, we briefly
explain overload and flash crowd conditions in systems especially in web.

In web service prevision it is possible for the unexpected arrival of massive number of service
requests in a short time periods, this situation referred to as a flash crowd. This is often beyond the
control of the service provider and have the potential to severely degrade service quality and, in the
worst case, to deny service to all clients completely. It is not reasonable to increase the system
resources for short-time flash crowd events. Therefore if Web-Service Software could detect flash
crowds at runtime and changes its own behavior proportional to situation occurred, then it can resolve
this bottle neck. In the new architecture, a component has been added to previous one, i.e.
PingFactoryHarness; it controls response time of each request, detects the flash crowd situation and
directs PingHarness to change its behavior proportional to condition occurred. At the end of this
section, results of analysis of both architectures are presented and it is shown that how the new
architecture is more effective than old one, to face with flash crowds. Thanks to Lindsey Bradford for
giving us the initial performance data of the system.

Fig.4. shows component diagram along with performance data and the new component
PingFactoryHarness. We used notations defined in [15] by OMG Group.

Fig. 4. Extended Component Diagram of new Web-Service Software architecture.

Fig. 5.Sequence Diagram of '/ping' scenario in the new architecture.

Fig 5 shows sequence diagram of '/ping' request in new architecture. Region 1 and 4 execute

the same behavior as previous architecture, with a small difference: HttpTransponderHarness takes a
snapshot of the system time just after the request text has been received and just before that text is sent
to client. This snapshot data used to calculate an elapsed time for responding to the request later in
sequence and finally to detect abnormal conditions (e.g. flash crowd). Region 2 is the same as before.
The component PingHarness (region 3) is an updated component; it uses a different mechanism to
generate response HTML text, and has the ability of changing its behavior when receive relevant
message from PingFactoryHarness (We ignore details description due to space limitation).

Region 5 represents behavior of new component: PingFactoryHarness receives the elapse time
from HttpTransponderHarness and decides if change is need to the behavior of PingHarness. In the
region 6 PingHarness receives the direction of changing behavior.

For the sake of performance evaluation, in experiments performed on both architecture
models, in an overload condition, we observe that service times is not stable. It is because of sudden
increase of requests for the system resources. This situation dose not follow the flow balancing
condition in usual queuing models [16], thus formulating an analytic approach covering the situation is
problematic. Hence we use simulation for this part of work and the results of the simulation were used
to calibrate analytic model introduce in section 3-4. We summarized the results of our hybrid method to
Tables 4 and 5 for the original and updated architecture respectively.

Table 4. Performance data of the old architecture.

Response time(ms) Request per Sec.

Avg. Min. Max.

Average
number of

response per
Sec.

2 285.9 284.8 373.9 2

3 1906.3 305.5 7843.5 0.5

5 2877.8 428.8 7744.6 0.2
10 1180.2 1011.2 1397.5 0.0

Table5. Performance data of updated architecture.

 The difference between the tow architectures at the request rate of 10 per second is

interesting. At first glance, it seems that the first architectures response times are much better than the
second, However, Comparing throughput between both architectures indicates that first architecture
delivered almost no responses at request rate higher than 5; in contrast the second architecture
continued to deliver responses, despite the worse response time.

5. Conclusion and Future Works
 In this paper, a framework was introduced to formally specify and evaluate Software
Architectures. SA specification is initially described in UML2.0 that is the input model for a
transformation algorithm called UML2TA introduced within our framework. UML2TA transforms SA
descriptions in UML2.0 to a formal model called Team Automata (TA). TA is inspired by Input/Output
Automata and has been used in the literature for modeling components interaction in groupware
systems. It has also a great generality and flexibility to specify different aspects of components
interaction, so it could be best fit to model dynamics of SA. By modeling SA with a powerful model
such as TA, a rigorous basis emerged to evaluate (and also verify) functional and non-functional
attributes of SA. So we extended usual TA model to include performance aspects which could be
involved in UML2.0 diagrams. We also proposed a hybrid performance evaluation model over TA
specifications. Finally we applied our framework to the architecture of a web-service software and
showed how the framework could be used practically to anticipate performance aspects of an
architecture.

Response time(ms) Request per Sec.

Avg. Min. Max.

Average
number of

response per
Sec.

2 223.2 222.2 270.8 2

3 229.9 222.3 241.2 3.1

5 7478.1 239.1 10673 3
10 8683.4 255.7 10706 3.4

 In the future works, we decide to firstly, promote our performance model to support wide
variety of interactions such as asynchronous, anonymous in distributed environments. Secondly, we are
going to enhance our framework to include another non-functional attributes e.g. security; this issue
will facilitate simultaneous evaluation of several attributes regarding their conflicting natures.

Refrences
[1] J Ivers, P. Clements, D. Garlan, R Nord, B. Schmerl, J. R. Oviedo Silva. Documenting Component and Connector Views with

UML2.0. Technical report, CMU/SEI, TR-008 ESC-TR-2004-008, 2004.
[2] R. Allen, D. Garlan, A formal basis for architectural connection, ACMTrans. Softw. Eng. Methodol. 6 (3) (1997) 213�249.
[3] D. Giannakopoulou, J. Kramer, S.C. Cheung, Analysing the behaviour of distributed systems using tracta, Automated Software

Engineering (special issue), Automated Anal. Softw. 6 (1) (1999) 7�35.
[4] J.J.Li , J.R. Horgan , Applying formal description techniques to software architectural design, The journal of Computer

Communications, 23,1169-1178, 2000.
[5] M. Shaw, D. Garlan, Software Architecture�Perspectives on an Emerging Discipline, Prentice Hall, Englewood cliffs, NJ, 1996.
[6] R. Allen, R. Douence, D. Garlan, Specifying and analyzing dynamic software architectures, in: Proceedings of FASE , 1998, pp. 21�

37.
[7] P.Inverardi and L.Mostarda, A Distributed Approach for Secure Software Architecture, R. Morrison and F. Oquendo (Eds.): EWSA

2005, LNCS 3527, pp. 168�184, 2005.Springer-Verlag Berlin Heidelberg 2005.
[8] M. Beek, C. Ellis, J. Kleijn, and G. Rozenberg. Synchronizations in Team Automata for Groupware Systems. Computer Supported

Cooperative Work�The Journal of Collaborative Computing, 12(1):21�69, 2003.
[9] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI Quarterly, 2(3):219�246, September 1989.
[10] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Volker Gruhn, editor, Proceedings of the Joint 8th European

Software Engeneering Conference and 9th ACM SIGSOFT Symposium on the Foundation of Software Engeneering (ESEC/FSE-01),
volume 26, 5 of Software Engineering Notes, pages 109�120. ACM Press, September 10�14 2001.

[11] Luca de Alfaro and Thomas A. Henzinger. Interface-Based Design. In Proceedings of the Marktoberdorf Summer School, Kluwer,
Engineering Theories of Software Intensive Systems, 2004.

[12] M. Sharafi, F Shams Aliee, A. Movaghar. A Review on Specifying Software Architectures Using Extended Automata-Based Models,
in proceeding of IPM International Symposium on Fundamentals of Software Engineering (FSEN07), 2007.

[13] C. Ellis. Team Automata for Groupware Systems. In Proceedings of the International ACM SIGGROUP Conference on Supporting
Group Work: The Integration Challenge (GROUP�97), pages 415�424. ACM Press, New York, 1997.

[14] Lubo¡s Brim, Ivana Cern , Pavl´ýna Va¡rekov, Barbora Zimmerova , ComponentInteraction Automata as a Verification Oriented
Component-Based System Specification, 2005.

[15] Object Management Group. UML Profile, for Schedulability, Performance, and Time. OMG document ptc/2002-03-02,
http://www.omg.org/cgi-bin/doc?ptc/2002-03-02.

[16] K. Kant and M.M. Sirinivasan. Introduction to Computer Performance Evaluation, McGrawhill Inc. 1992
[17] Lindsay William Bradford. Unanticipated Evolution of Web Service Provision Software using Generative Object Communication.

Final report of PhD thesis , Faculty of Information Technology Queensland University of Technology, GPO Box 2434, Brisbane Old
4001, Australia, 10 May, 2006.

[18] A. Di Marco, P. Inverardi. Compositional Generation of Software Architecture Performance QN Models
Dipartimento di Informatica University of L�Aquila Via Vetoio 1, 67010 Coppito, L�Aquila, Italy, 2004.

[19] N. Medvidovic, R. Taylor, Sclassification and comparison framework for software architecture description languages, IEEE
Transaction on Software Engineering 26(1)(2000) 70-93.

[20] L. Bass, P. Clements, R. Kazman, Analyzing development qualities at the architectural level, in: Software Architectures in Practice,
SEI Series in Software Engineering, Addison-Wesley, Reading, MA, 1998.

[21] K. Cooper, L. Dai, Y. Deng, Performance modeling and analysis of software architectures: An aspect-oriented UML based approach.
Science of Computer Programming, Elsevier ,2005.

[22] X. He, Y. Deng, A Framework for Developing and Analyzing Software Architecture Specification in SAM, The Computer Journal vol.
45, No. 1, 2002.

[23] Maurice H. ter Beek, Gabriele Lenzini, Marinella Petrocchi, Team Automata for Security� A Survey �,Electronic Notes in Theoretical
Computer Science, 128 (2005) 105�119.

[24] L. Egidi, M. Petrocchi, Modelling a Secure Agent with Team Automata, The Journal of Electronic Notes in Theoretical Computer
Science 142 (2006) 111�127.

[25] Federica Aquilani, Simonetta Balsamo , Paola Inverardi, Performance analysis at the software architectural design level, Performance
Evaluation 45, Elsevier, (2001) 147---178.

