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Part I: Periodic sampling

Periodic sampling
Frequency domain representation 
Reconstruction 
Changing the sampling rate using discrete-
time processing

Digital Signal Processing, IV, Zheng-Hua Tan, 20064

Periodic sampling

From continuous-time        to discrete-time

Sampling period
Sampling frequency
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Two stages

Mathematically
Impulse train modulator
Conversion of the impulse 
train to a sequence
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Periodic sampling

Tow-stage representation
Strictly a mathematical representation that is 
convenient for gaining insight into sampling in 
both the time and frequency domains.
Physical implementation is different.

a continuous-time signal, an impulse train,  
zero except at nT

a discrete-time sequence, time normalization, 
no explicit information about sampling rate

Many-to-many in general not invertible 
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Part II: Frequency domain represent.

Periodic sampling
Frequency domain representation
Reconstruction 
Changing the sampling rate using discrete-
time processing
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Frequency-domain representation 

From xc(t) to xs(t)

The Fourier transform of xs(t) consists of periodic 
repetition of the Fourier transform of xc(t).
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The Fourier transform of a periodic 
impulse train is a periodic impulse train.

?
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Frequency-domain
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Recovery 

Ideal lowpass
filter with gain 
T and cutoff 
frequency 
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Aliasing distortion 

Due to the overlap among the copies of              , due 
to 

not recoverable by lowpass filtering
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Aliasing – an example 
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Nyquist sampling theorem

Given bandlimited signal           with 

Then        is uniquely determined by its samples

If

is called Nyquist frequency
is called Nyquist rate
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Fourier transform of x[n]

From         to 

From            to 
By taking continuous-time Fourier transform of xs(t)

By taking discrete-time Fourier transform of x[n]
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Fourier transform of x[n]

is simply a frequency-scaled version of         
with

retains a spacing between samples equal 
to the sampling period T while         always 
has unity space. 
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Sampling and reconstruction of Sin Signal
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Part III: Reconstruction

Periodic sampling
Frequency domain representation 
Reconstruction
Changing the sampling rate using discrete-
time processing
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Requirement for reconstruction

On the basis of the sampling theorem, 
samples represent the signal exactly when:

Bandlimited signal
Enough sampling frequency
+ knowledge of the sampling period recover the 
signal
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Reconstruction steps 

Given x[n] and T, the impulse train is

i.e. the nth sample is associated with the impulse at 
t=nT.

The impulse train is filtered by an ideal lowpass CT 
filter with impulse response 
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Ideal lowpass filter 
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Ideal lowpass filter interpolation

CT signal

Modulated impulse train
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Ideal discrete-to-continuous-time converter
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discrete-to-continuous-time converter

From http://en.wikipedia.org/wiki/Digital-to-analog_converter.

Ideally sampled signal. Piecewise constant signal typical 
of a practical DAC output. 

“Practical DACs do not output a sequence of dirac impulses (that, if 
ideally low-pass filtered, result in the original signal before sampling) 
but instead output a sequence of piecewise constant values or 
rectangular pulses”
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Applications
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Part IV: Changing the sampling rate

Periodic sampling
Frequency domain representation 
Reconstruction 
Changing the sampling rate using discrete-
time processing
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Downsampling

By reconstruction & re-sampling though not desirable
Using DT processing only: 

Sampling rate reduction by an integer factor –
downsampling by “sampling” it
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Frequency domain

DT Fourier transform )(][][ nMTxnMxnx cd ==
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Similar to the Eq. above!
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Frequency domain - an example

Sampling results in 
copies at
Same, downsampling 
generates M copies of  
.         with frequency 
scaled by M and 
shifted.
Aliasing can be 
avoided if              is 
bandlimited
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Frequency domain - an example

Downsampling factor is 
too large, causing 
aliasing, resulting in 
the need for DT ideal 
lowpass filter with 
cutoff frequency pi/M

To avoid aliasing in 
downsampling by a 
factor of M requires 
that

πω <MN

'TNN Ω=ω
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A general downsampling system

The system is also called decimator
The process is called decimation
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Increasing sampling rate – upsampling

Downsampling analogous to sampling a CT signal
Upsampling analogous to D/C conversion
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Fourier domain

Fourier transform of the output of expander

Which is s frequency scaled version, w is replaced by 
wL so
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An example

DTFT of 

System: interpolator
Process: interpolation
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Summary

Periodic sampling
Frequency domain representation 
Reconstruction 
Changing the sampling rate using discrete-
time processing
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