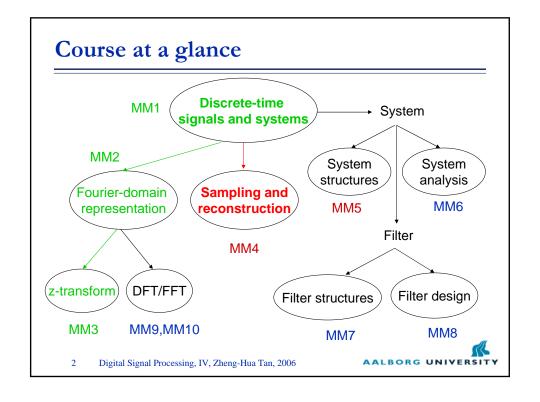
Digital Signal Processing, Fall 2006

Lecture 4: Sampling and reconstruction

Zheng-Hua Tan

Department of Electronic Systems Aalborg University, Denmark zt@kom.aau.dk



Part I: Periodic sampling

- Periodic sampling
- Frequency domain representation
- Reconstruction
- Changing the sampling rate using discretetime processing

Digital Signal Processing, IV, Zheng-Hua Tan, 2006

Periodic sampling

• From continuous-time $x_c(t)$ to discrete-time x[n]

$$x[n] = x_c(nT), \quad -\infty < n < \infty$$

- Sampling period
- \Box Sampling frequency $f_s = 1/T$

$$\Omega_s = 2\pi/T$$

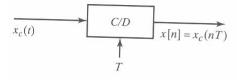


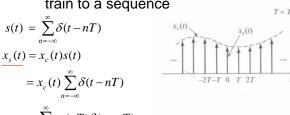
Figure 4.1 Block diagram representation of an ideal continuous-to-discrete-time (C/D) converter.

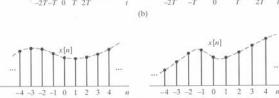
4 Digital Signal Processing, IV, Zheng-Hua Tan, 2006

ALBORG UNIVERSITY

Two stages

- Mathematically
 - Impulse train modulator
 - Conversion of the impulse train to a sequence





C/D converter

Conversion from impulse train

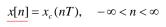
to discrete-time

In practice?

 $T = 2T_1$

 $x[n] = x_c(nT)$

 $x_s(t)$



$$\underline{x_c(t)} = \int_{-\infty}^{\infty} x_c(\tau) \delta(t - \tau) d\tau$$

5 Digital Signal Processing, Γ

Figure 4.2 Sampling with a periodic impulse train followed by conversion to a discrete-time sequence. (a) Overall system. (b) $x_s(t)$ for two sampling rates. (c) The output sequence for the two different sampling rates.

Periodic sampling

- Tow-stage representation
 - Strictly a mathematical representation that is convenient for gaining insight into sampling in both the time and frequency domains.
 - Physical implementation is different.
- Many-to-many → in general not invertible

Part II: Frequency domain represent.

- Periodic sampling
- Frequency domain representation
- Reconstruction
- Changing the sampling rate using discretetime processing

7 Digital Signal Processing, IV, Zheng-Hua Tan, 2006

Frequency-domain representation

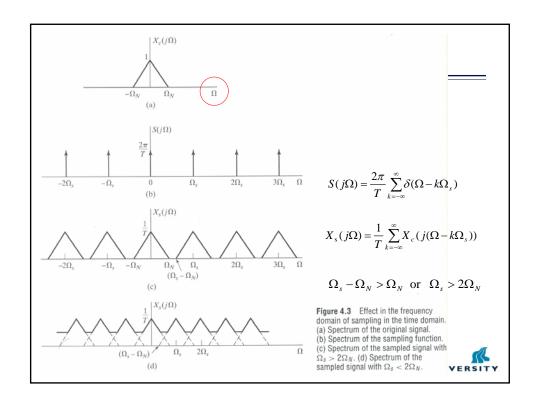
From $x_c(t)$ to $x_s(t)$ The Fourier transform of a periodic impulse train is a periodic impulse train.

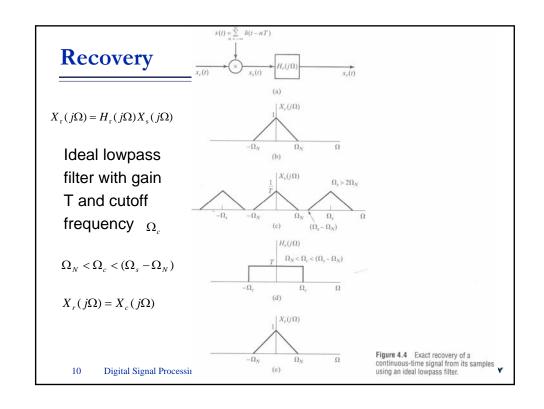
$$\begin{split} s(\underline{t}) &= \sum_{n=-\infty}^{\infty} \delta(t-nT) & \iff S(j\Omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s) \\ x_s(t) &= x_c(t)s(t) & \iff X_s(j\Omega) = \frac{1}{2\pi} X_c(j\Omega) * S(j\Omega) \\ &= x_c(t) \sum_{n=-\infty}^{\infty} \delta(t-nT) & = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s)) \\ &= \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t-nT) \end{split}$$

■ The Fourier transform of $x_s(t)$ consists of periodic repetition of the Fourier transform of $x_c(t)$.

8 Digital Signal Processing, IV, Zheng-Hua Tan, 2006

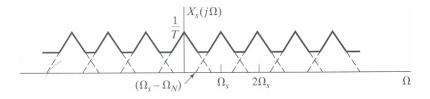
ALBORG UNIVERSITY

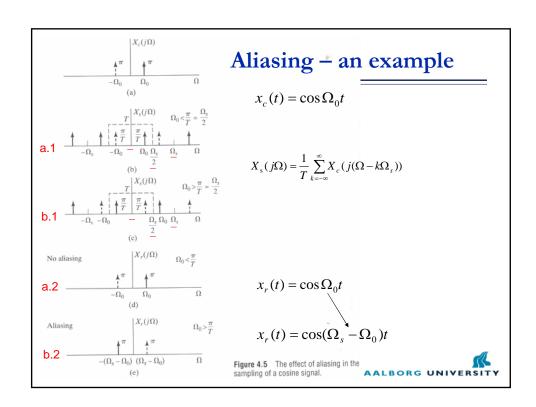




Aliasing distortion

- \blacksquare Due to the overlap among the copies of $~X_{\rm c}(\it j\Omega)~$, due to $~\Omega_{\rm s} \leq 2\Omega_{\rm N}$
- $X_c(j\Omega)$ not recoverable by lowpass filtering





Nyquist sampling theorem

Given bandlimited signal $x_c(t)$ with

$$X_c(j\Omega) = 0$$
, for $|\Omega| \ge \Omega_N$

Then $x_c(t)$ is uniquely determined by its samples

$$x[n] = x_c(nT), \quad -\infty < n < \infty$$

lf

13

$$\Omega_s = \frac{2\pi}{T} \ge 2\Omega_N$$

 Ω_N is called Nyquist frequency

 $2\Omega_{\scriptscriptstyle N}$ is called Nyquist rate

Digital Signal Processing, IV, Zheng-Hua Tan, 2006

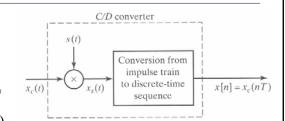
Fourier transform of x[n]

From $x_s(t)$ to x[n]

$$x_s(t) = \sum_{n = -\infty}^{\infty} x_c(nT)\delta(t - nT)$$

$$x[n] = x_c(nT), \quad -\infty < n < \infty$$

From $X_s(j\Omega)$ to $X(e^{j\omega})$



By taking continuous-time Fourier transform of $\boldsymbol{x}_{s}(t)$

$$X_{s}(j\Omega) = \sum_{n=-\infty}^{\infty} x_{c}(nT)e^{-j\Omega Tn} \qquad (X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt)$$

By taking discrete-time Fourier transform of x[n]

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n} \qquad X_{s}(j\Omega) = X(e^{j\omega})|_{\omega=\Omega T} = X(e^{j\Omega T})$$

4 Digital Signal Processing, IV, Zheng-Hua Tan, 2006

ALBORG UNIVERSITY

Fourier transform of x[n]

$$X_s(j\Omega) = X(e^{j\omega})|_{\omega=\Omega T} = X(e^{j\Omega T})$$

$$X_{s}(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega - k\Omega_{s}))$$

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\frac{\omega}{T} - \frac{2\pi k}{T})) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j\frac{\omega - 2\pi k}{T})$$

 $X(e^{j\omega})$ is simply a frequency-scaled version of $X_s(j\Omega)$ with $\omega = \Omega T$

 $x_s(t)$ retains a spacing between samples equal to the sampling period T while x[n] always has unity space.

ALBORG UNIVERSITY

15 Digital Signal Processing, IV, Zheng-Hua Tan, 2006

Sampling and reconstruction of Sin Signal

 $x_c(t) = \cos(4000\pi t) \to \Omega_0 = 4000\pi$

 $T = 1/6000 \rightarrow \Omega_s = 2\pi/T = 12000\pi$: no aliasing

$$x[n] = x_c(nT) = \cos(4000\pi nT) = \cos((2\pi/3)n) = \cos(\omega_0 n)$$

$$x_c(t) \leftrightarrow X_c(j\Omega) = \pi \delta(\Omega - 4000\pi) + \pi \delta(\Omega + 4000\pi) \qquad X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$$

 $X(e^{j\omega}) = X_s(j\Omega)|_{\Omega = \omega/T} = X_s(j\omega/T)$ with normalized frequency $\omega = \Omega T$

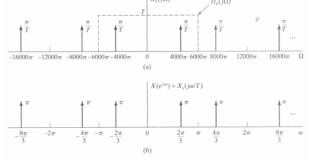


Figure 4.6 Continuous-time (a) and discrete-time (b) Fourier transforms for sampled cosine signal with frequency $\Omega_0 = 4000\pi$ and sampling period T = 1/6000.

How about

 $x_{o}(t) = \cos(16000\pi t)$

AALBORG UNIVERSITY

Part III: Reconstruction

- Periodic sampling
- Frequency domain representation
- Reconstruction
- Changing the sampling rate using discretetime processing

17

Digital Signal Processing, IV, Zheng-Hua Tan, 2006

Requirement for reconstruction

- On the basis of the sampling theorem, samples represent the signal exactly when:
 - Bandlimited signal
 - Enough sampling frequency
 - □ + knowledge of the sampling period → recover the signal

AALBORG UNIV

Reconstruction steps

(1) Given x[n] and T, the impulse train is

$$x_s(t) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t-nT) = \sum_{n=-\infty}^{\infty} x[n]\delta(t-nT)$$

- i.e. the nth sample is associated with the impulse at t=nT
- (2) The impulse train is filtered by an ideal lowpass CT filter with impulse response $h_r(t) \leftrightarrow H_r(j\Omega)$

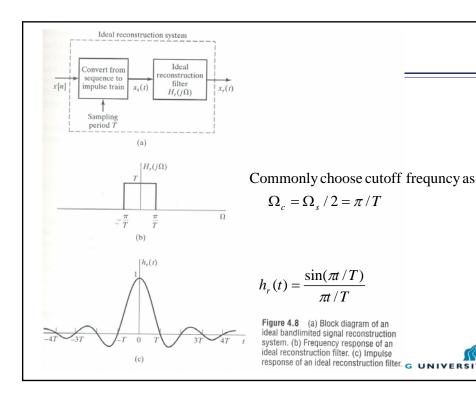
$$x_r(t) = \sum_{n = -\infty}^{\infty} x(n) h_r(t - nT)$$

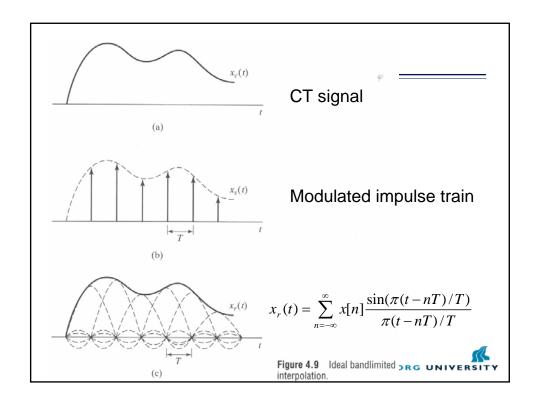
$$X_r(j\Omega) = H_r(j\Omega)X(e^{j\Omega T})$$

AALBORG UNIVERSITY

Digital Signal Processing, IV, Zheng-Hua Tan, 2006

19





Ideal discrete-to-continuous-time converter

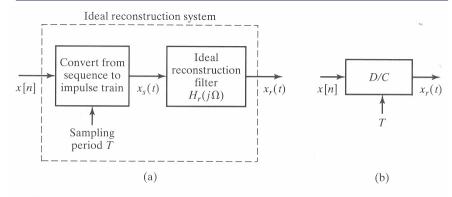


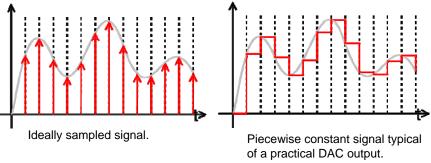
Figure 4.10 (a) Ideal bandlimited signal reconstruction. (b) Equivalent representation as an ideal D/C converter.

22 Digital Signal Processing, IV, Zheng-Hua Tan, 2006

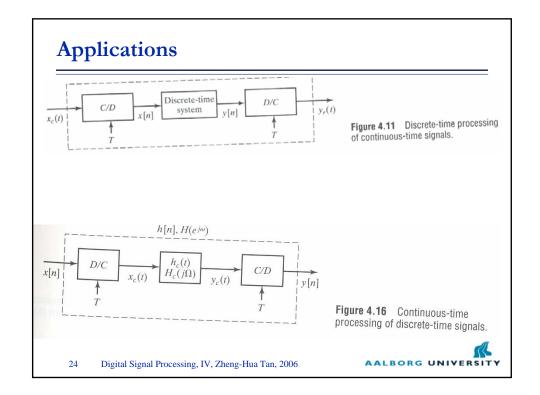
AALBORG UNIVERSITY

discrete-to-continuous-time converter

"Practical DACs do not output a sequence of dirac impulses (that, if ideally low-pass filtered, result in the original signal before sampling) but instead output a sequence of piecewise constant values or rectangular pulses"



From http://en.wikipedia.org/wiki/Digital-to-analog_converter.



Part IV: Changing the sampling rate

- Periodic sampling
- Frequency domain representation
- Reconstruction
- Changing the sampling rate using discretetime processing

25

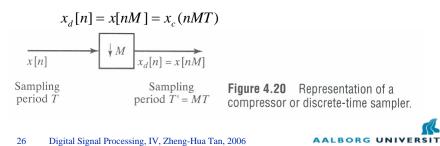
Digital Signal Processing, IV, Zheng-Hua Tan, 2006

Downsampling

$$x[n] = x_c(nT)$$
$$x'[n] = x_c(nT')$$

By reconstruction & re-sampling though not desirable Using DT processing only:

 Sampling rate reduction by an integer factor – downsampling by "sampling" it



13

Frequency domain

DT Fourier transform

$$x_d[n] = x[nM] = x_c(nMT)$$

$$\begin{split} X(e^{j\omega}) &= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c (j(\frac{\omega}{T} - \frac{2\pi k}{T})) \\ X_d(e^{j\omega}) &= \frac{1}{T'} \sum_{r=-\infty}^{\infty} X_c (j(\frac{\omega}{T'} - \frac{2\pi r}{T'})) \\ &= \frac{1}{MT} \sum_{r=-\infty}^{\infty} X_c (j(\frac{\omega}{MT} - \frac{2\pi r}{MT})) \end{split}$$

$$r = i + kM$$
, $-\infty < k < \infty$, $0 \le i \le M - 1$, $-\infty < r < \infty$

$$X_{d}(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} \left[\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c} \left(j \left(\frac{\omega}{MT} - \frac{2\pi k}{T} - \frac{2\pi i}{MT} \right) \right) \right]$$

Since
$$X(e^{j(\omega-2\pi i)/M}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c (j(\frac{\omega}{MT} - \frac{2\pi i}{MT} - \frac{2\pi k}{T}))$$

$$\to X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\omega - 2\pi i)/M})$$

Similar to the Eq. above!

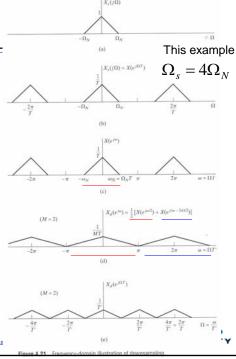
27 Digital Signal Processing, IV, Zheng-Hua Tan, 2006

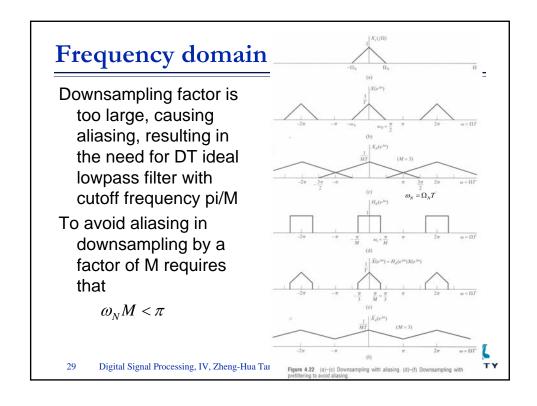
AALBORG UNIVERSITY

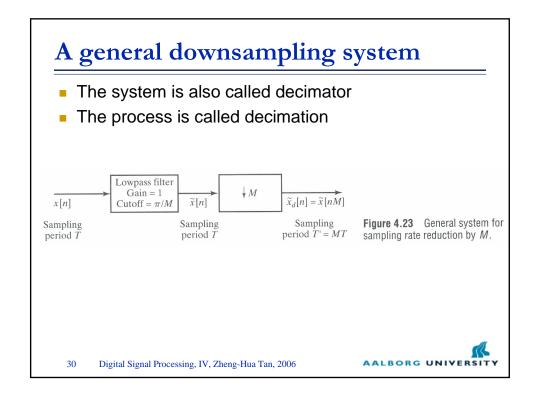
Frequency domain

- Sampling results in copies at $n\Omega_s = 2n\pi/T$
- Same, downsampling generates M copies of X(e^{ja}) with frequency scaled by M and shifted.
- Aliasing can be avoided if $X(e^{j\omega})$ is bandlimited

$$X(e^{j\omega}) = 0$$
, $\omega_N \le |\omega| \le 2\pi$
and $2\pi/M \ge 2\omega_N$





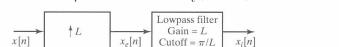


Increasing sampling rate - upsampling

- Downsampling → analogous to sampling a CT signal
- Upsampling → analogous to D/C conversion

$$x[n] = x_c(nT)$$

 $x_i[n] = x_c(nT'), T' = T/L$
 $x_i[n] = x[n/L] = x_c(nT/L), n = 0,\pm L,\pm 2L,...$



Sampling Expander Sampling period T' = T/L

Sampling period T' = T/L

Figure 4.24 General system for sampling rate increase by L.

$$x_{e}[n] = \begin{cases} x[n/L], & n = 0, \pm L, \pm L, \dots \\ 0, & \text{otherwise} \end{cases}$$
$$x_{e}[n] = \sum_{k=0}^{\infty} x[k] \delta[n-kL]$$

 $x_e[n] = \sum_{k=0}^{\infty} x[k] \delta[n - kL]$

Digital Signal Processing, IV, Zheng-Hua Tan, 2006

AALBORG UNIVERSIT

Fourier domain

Fourier transform of the output of expander

$$\begin{split} x_e[n] &= \sum_{k=-\infty}^{\infty} x[k] \delta[n-kL] \\ X_e(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} (\sum_{k=-\infty}^{\infty} x[k] \delta[n-kL]) e^{-j\omega n} \\ &= \sum_{k=-\infty}^{\infty} x[k] e^{-j\omega Lk} = X(e^{j\omega L}) \end{split}$$

Which is s frequency scaled version, w is replaced by wL so

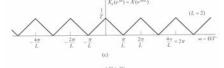
$$\omega = \Omega T'$$

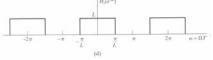
An example

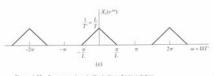
DTFT of $x[n] = x_c(nT)$

$$X_e(e^{j\omega}) = X(e^{j\omega L})$$

System: interpolator Process: interpolation







33

Digital Signal Processing, IV, Zheng-H

Figure 4.25 Frequency-domain illustration of interpolation

Summary

- Periodic sampling
- Frequency domain representation
- Reconstruction
- Changing the sampling rate using discretetime processing

AALBORG UNIVERSIT

