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A B S T R A C T   

Shape memory polymers belong to a category of smart materials capable of changing their predetermined shape 
in response to specific stimuli like temperature, electricity, or magnetic fields. Polycaprolactone is an example of 
a biodegradable polyester from the aliphatic polyester family that has been extensively studied due to its unique 
mechanical properties, compatibility with various polymers, and biodegradability. In this upcoming research, 
different amounts of polycaprolactone have been added to investigate its impact on the thermal-mechanical 
behavior of a smart polymer nanocomposite consisting of polyurethane/polycaprolactone/graphene oxide. 
The thermal, mechanical, and atomic properties of this designed nanocomposite have been evaluated utilizing 
molecular dynamics simulation technique and LAMMPS software. The findings of the research illustrated that by 
increasing the amount of polycaprolactone from 10 to 50%, the heat flux and thermal conductivity in the 
modeled nanocomposite increased from 688.43 to 724.03 W/m2 and from 0.85 to 0.99 W/m.K. Also, increasing 
the amount of polycaprolactone from 10 to 50% has led to an increase in the ultimate strength and Young’s 
modulus of the studied nanocomposite from 56.32 to 62.23 MPa and from 5.99 to 6.29 MPa. The mean square 
displacement parameter and glass transition temperature have converged to 0.31 Å2 and 331 K with increasing 
amount of polycaprolactone.   

1. Introduction 

Intelligence in materials is a characteristic that is not limited to a 
specific group and is observed in most groups of materials. Polymers are 
no exception to this phenomenon and exhibit different responses to 
various stimuli such as temperature (temp), pressure (press), electric 
fields, and magnetic fields. These polymers are categorized into different 
groups with distinct properties and applications [1–3]. Among the 
well-known branches of smart polymers that have gained widespread 
commercial use, we can mention shape memory polymers, electroactive 
polymers, self-healing polymers, and polymers carrying phase change 
materials. These types of polymers are further classified into three cat-
egories based on the type of stimulus they respond to: physical stimuli, 
chemical stimuli, and biological stimuli [4–7]. Shape memory polymers 
belong to a class of smart materials that can change their predetermined 
shape when exposed to certain stimuli like temp, electricity, or magnetic 
fields. These polymers have been proposed since 1981 and come in 
various types [8]. Similar to regular polymers, shape memory polymers 

have a lattice-like three-dimensional molecular structure consisting of 
"fixing points" and polymer segments connecting these points are called 
transfer phase [9]. Among the different types of shape memory polymers 
sensitive to the mentioned stimuli, thermal shape memory polymers 
have received more attention. Polycaprolactone (PCL) is an example of a 
biodegradable polyester belonging to the aliphatic polyester family. It is 
produced through the ring-opening polymerization of caprolactone (CL) 
monomers. This material has been extensively studied due to its unique 
mechanical properties, compatibility with various other polymers, and 
biodegradability [10–12]. The composite polymer’s physical, mechan-
ical, and thermal properties are influenced by its molecular weight and 
transparency value, which affects its degradability through hydrolysis of 
ester bonds in physiological conditions. PCL is highly hydrophobic, has a 
semi-crystalline state, and easily dissolves at room temp. Its low melting 
point and high compositional compatibility make it easy to process. 
These properties have motivated researchers to explore the potential use 
of PCL in biobiology [13–15]. 

Nowadays, various methods for characterization of materials are 
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used like numerical estimation of characteristics [16], finite element 
methods [17], different computer based modeling [18], Simulation 
based on molecular activities [19] and the studies based on the experi-
ments [20]. Material reinforcement by utilizing NPs is under attention to 
improve properties of the materials or even nanofluids [21–23]. 

Babaei et al. [24] conducted a study to examine the impact of mo-
lecular weight variations in shape memory polyurethanes (SMPUs) and 
graphene content on the mechanical properties and shape memory 
behavior of polyurethane (PU)/graphene nanocomposites (NCs). The 
findings revealed that changes in the molecular weight of the PCL 
component and graphene nanosheet concentration influenced the 
transition and crystallization temperatures of the samples. Additionally, 
the presence of nanosheets restricted the mobility of PCL chains, 
resulting in a higher shape constant ratio. Moreover, the nanoplates 
prevented stress transfer to the hard parts, leading to an increased shape 
recovery ratio. In another study, Boudjellal et al. [25] synthesized and 
examined the mechanical properties of a composite consisting of alpha 
fibers and graphene/PCL nanoplatelets. The results demonstrated that 
incorporating 5% by weight of graphene nanoplatelets enhanced the 
tensile strength of PCL from 13.23 to 14.18 MPa, as well as increased 
Young’s modulus (YM) from 248.75 to 431.15 MPa. Stefanovic et al. 
[26] investigated the influence of adding PCL on the thermal and me-
chanical properties of PU. The findings indicated that incorporating PCL 
significantly improved these properties; however, it resulted in a 
decrease in crosslink density and hydrogen bond formation potential. 
Shahsavari et al. [27] explored the shape memory behavior of 
PCL/thermoplastic starch/graphene nanoplatelet NCs. The results 
revealed that different stimuli had varying effects on the composite’s 
shape memory behavior. Notably, utilizing water as a propellant 
improved shape recovery by reducing the weight percentage of PCL 
from 30% to 10%. Wang et al. [28] investigated the thermal and me-
chanical properties of thermoplastic PU in their study. The findings of 
the study revealed that when the smart polymer is exposed to light 
stimulus such as infrared rays and direct sunlight, it becomes activated. 
Additionally, the light radiation enhances the strength of the surface 
bond, thereby improving the mechanical properties of the product. 
Cetiner et al. [29] conducted a study to examine how adding thermo-
plastic PU and graphene nanoplatelets to polylactic acid affects its 
shape, mechanical, and thermal memory behavior. The results indicated 
that incorporating PU into polylactic acid at a weight ratio of 9:1 im-
proves flexibility and shape memory behavior. Furthermore, adding 
0.5% by weight of graphene nanoplatelets increases mechanical prop-
erties by 24% and thermal properties by 15%. Liang et al. [30] inves-
tigated the impact of adding graphene oxide (GO)-nanoparticles (NPs) 
on the mechanical properties of PU. The findings demonstrated that 
incorporating 0.70% by weight of graphene NPs increases the tensile 
strength of the NC by 64.89%. 

Based on the studies conducted in this field, it can be concluded that 
a comprehensive study on the shape memory, mechanical and thermal 
properties of smart polymer NCs of PU/PCL/ GO has not been done by 
the molecular dynamics (MD) simulation. Therefore, in this study, the 
effects of different percentages of PCL (10, 20, 30 and 50%) on the shape 
memory, mechanical and thermal properties of smart polymer NC PU/ 
PCL/ GO are focused. In this research, various polymer structures have 
been modeled utilizing Avogadro software, and the balance of the 
structure, properties such as heat flux (HF), thermal conductivity (TC), 
final volume, ultimate strength (US), YM, mean square displacement 
(MSD) and glass transition temp (Tg) in a period of 10 ns has been 
evaluated and reported. The MD simulations in nanodimensions are a 
suitable and useful method in the present research, and as a result, the 
outputs of these simulations can be utilized in practical fields. 

2. Simulation method 

Currently, scientists have been researching the shape memory 
properties of various polymers, particularly engineering polymers and 

biopolymers, in order to develop materials with shape memory capa-
bilities as well as mechanical properties and biocompatibility. This study 
focuses on enhancing the properties of PCL, a biocompatible polymer 
derived from natural sources, by incorporating it into a smart polymer 
NC made of PU and GO- NPs. The impact of adding PCL is evaluated 
through computer simulations, specifically MD simulation. To examine 
the effect on the thermal-mechanical behavior of the NC, different 
amounts of PCL (10, 20, 30, and 50%) are considered. The simulations 
are conducted in a cubic chamber measuring 300 nm. The modeling 
process involves utilizing Avogadro software to create structures for the 
polymers and NPs, which are then assembled in a simulation box uti-
lizing Packmol software. The thermal and mechanical properties of the 
simulated NC are assessed utilizing LAMMPS computing software. To 
ensure structural balance, the NVT ensemble at a temp of 300 K is 
employed. Physical values such as temp and PE are calculated for the 
structure under investigation. The time required to check the balance is 
considered to be 10 ns and sampling occurring every 20,000 time steps. 
The total simulation time is 20 ns with a time step of 1 fs. Temp and press 
adjustments are made utilizing Langevin thermostat and Brandsen 
barostat respectively. Fig. 1 displays the atomic structure of the simu-
lated samples with varying amounts of PCL. 

3. Results and discussion 

In this section, the results of MD simulation and LAMMPS software 
for the modeled NC are reported. In the first step of the present MD 
simulations, the thermodynamic equilibrium in the samples has been 
examined by examining the temporal changes of physical quantities 
including temp and PE. The ensemble utilized to check the balance is 
NVT and the required time is considered to be 10 ns. To verify the 
thermodynamic equilibrium in the simulated sample, the initial temp of 
the structure is set to 300 K. Fig. 2 illustrates the temp variations across 
the entire atomic sample over time during the simulation. The obtained 
results indicate that during the initial stages of the simulation, there are 
temp fluctuations that signify the mobility and fluctuations of NPs 
within the simulated structure. However, as the simulation time in-
creases to 10 ns, the temp within the sample converges to 300 K, indi-
cating that the atomic structure has reached thermodynamic 
equilibrium. From a physical standpoint, this temp balance in the sam-
ples suggests that there is no divergence in fluctuation range among 
structures within the simulation box, thus indicating stability. This 
thermodynamic behavior demonstrates a reduction in temp fluctuations 
over time, which further confirms stability in atomic samples. Moreover, 
despite achieving thermodynamic equilibrium in the simulation sample, 
it can be concluded that MD simulations yield reliable results. Addi-
tionally, the temp balance observed in the atomic sample validates that a 
simulation time of 10 ns is sufficient for this research. 

To ensure that the simulated samples are thermodynamically 
balanced at a temp of 300 K, the PE of the atomic structures is calcu-
lated. Fig. 3 presents the results of this calculation, showing that the 
numerical value of the PE converges to 16.77 kcal/mol after 10 ns. A 
negative value indicates interatomic attraction in the structures, while 
convergence suggests stability in the positions of the atoms. This in-
dicates that the proposed atomic sample is physically stable for practical 
applications. 

After balancing, the thermal-mechanical behavior of the simulated 
sample is evaluated utilizing the NPT ensemble within the simulation 
box. HF, TC, and volume change are calculated to assess the thermal 
behavior. To study how adding PCL affects this behavior in a designed 
NC, different amounts (10, 20, 30, and 50%) are considered and simu-
lations are repeated. Fig. 4 illustrates changes in HF for a PU/PCL/ GO 
NC sample at a temp of 300 K and press of 1 bar based on varying 
amounts of PCL. Analysis of HF and conductivity coefficient reveals 
improved thermal behavior when adding PCL to the target NC structure. 
From a numerical perspective, when the amount of PCL is increased 
from 10 to 50%, the HF in the structures increases from 688.43 to 724.03 
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W/m2. On an atomic level, this occurs due to intensified interatomic 
collisions and increased particle oscillations within the structure, 
resulting in improved heat transfer within the simulation box. 

Fig. 5, illustrates the changes in TC coefficient in the PU/PCL/ GO NC 
sample at a temp of 300 K and press of 1 bar, based on the amount of PCL 
present. The TC coefficient indicates a material’s ability to transfer heat, 
with higher coefficients indicating greater heat transfer to larger sur-
faces and at higher speeds. The results of MD simulation demonstrate an 
increase in the TC coefficient when the amount of PCL is increased from 
10% to 50%, rising from 0.85 W/m.K to 0.99 W/m.K. Consequently, the 
increase in HF leads to an increase in the TC coefficient as more heat is 
generated due to enhanced particle mobility and fluctuations within the 
structure. Additionally, in the modeled NC, increasing the amount of 
PCL results in more collisions and stronger attraction between particles, 
leading to increased adhesion between the base matrix and added NPs 
(PU and GO). This ultimately contributes to an increase in the TC co-
efficient of the studied NC. 

Fig. 6, illustrates the changes in volume of a NC sample made of PU, 
PCL, and GO at a temp of 300 K and a press of 1 bar, based on the amount 
of PCL present. This analysis allows us to predict the structural stability 
and mechanical usability of the sample. The numerical data shows that 
increasing the amount of PCL from 10% to 50% results in a convergence 
of the sample’s volume from 27311 to 27913 nm3, indicating structural 
stability. 

Fig. 7, displays the changes in stress-strain behavior in the NC sample 
as more PCL is added. The stress-strain diagram demonstrates an in-
crease in US and overall strength due to the addition of PCL. This can be 
attributed to an increase in particle collisions and fluctuations within the 
matrix, resulting in more bonding and ultimately enhancing the struc-
ture’s US. Based on Fig. 7 and the numerical results obtained, it is 
observed that US occurs at a strain of 950%. In samples containing 10%, 
20%, 30%, and 50% PCL, the corresponding US values are measured as 
56.32, 58.14, 59.15, and 62.23 MPa respectively. 

In this step, the US and YM values of the samples are reported based 
on the amount of PCL, as shown in Fig. 8. The results of the MD simu-
lation indicate that adding PCL increases the US and resistance of the 
NC. Increasing the amount of PCL from 10% to 50% leads to an increase 
in the US from 56.32 to 62.23 MPa. This is because more particles in the 
matrix result in more collisions and fluctuations, leading to more bonds 
and increased strength. Therefore, the amount of PCL should be 
considered in thermal and mechanical applications of these samples. 

Fig.9, illustrates the changes in YM in the NC sample as the amount 
of PCL increases. According to this figure, increasing the percentage of 
PCL from 10% to 50% leads to an increase in YM from 5.99 to 6.29 MPa, 
indicating an enhancement in the US of the NC. This can be attributed to 
an increase in particle collisions and oscillations within the matrix, 
resulting in stronger attraction between composite particles. These 
factors contribute to an overall increase in US and YM. 

Finally, in order to check the Tg in the simulated samples, the temp is 
changed in the sample and the temp related to the phase change of the 
final structure is measured. Based on the results presented in Table 1, 
with the increase in the amount of PCL, the Tg in the sample increases, 
and this high Tg increases the MSD parameter according to Fig. 10 The 
MSD parameter usually increases with increasing Tg due to increased 
mobility of molecules or particles in the material. This increased 
mobility allows the molecules or particles to move more freely, resulting 
in larger displacements and higher MSD values. The numerical findings 
demonstrate that by increasing the proportion of PCL to 50%, the MSD 
and Tg of the sample converge to 0.31 Å2 and 331 K, respectively. These 
results suggest that this composition could be suitable for thermal 
applications. 

The results obtained from the simulations conducted in this study are 
presented in Table 1, which includes information on the atomic, ther-
mal, and mechanical properties of the PU/PCL/GO NC. The simulations 
were performed at a temp of 300 K and a press of 1 bar, with varying 
amounts of PCL. 

Fig. 1. Atomic structure modeled during the equilibration process for NC with 
the presence of a) 20, b) 30 and c) 50% PCL. 
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4. Conclusion 

The study utilized the MD method and LAMMPS computing software 
to examine the thermal and mechanical properties of the PU/PCL/GO 
NC. The simulation results were divided into two parts: the equilibration 
of the NC over a 10 ns period, where temp and potential energy (PE) 
were assessed, and the investigation of the mechanical and thermal 
behavior of the NC with varying amounts of PCL. The results from the 
atomic samples indicated that:  

• The designed NC reached a temp of 300 K after 10 ns, suggesting a 
reduction in temp fluctuations and particle mobility, resulting in a 
balanced and stable structure.  

• Numerically, the PE in the designed NC converged to 16.77 kcal/ 
mol, indicating an average attractive force between particles in 
different regions of the simulation box. 

After observing equilibrium in the atomic samples, further analysis 
on the thermal and mechanical behavior was conducted, yielding the 
following findings:  

• Numerically, as PCL content increased from 10% to 50%, HF in the 
structures increased from 688.43 to 724.03 W/m2.  

• With an increase in PCL content, there was an increase in collisions 
and attraction between particles, leading to stronger adhesion be-
tween the base matrix and NPs, ultimately resulting in a higher TC.  

• Increasing PCL content from 10% to 50% resulted in an increase in 
TC from 0.85 to 0.99 W/m.K.  

• Increasing PCL content from 10% to 50% led to an increase in US of 
the modeled NC from 56.32 to 62.23 MPa.  

• An increase in particle count within the matrix led to more collisions 
and fluctuations, resulting in more bonds being formed and ulti-
mately increasing US of the structure. 

Fig. 2. Temp changes in the studied sample according to simulation time.  

Fig. 3. PE changes in the studied sample according to simulation time.  
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Appendix 

The MD simulation is a computer-based method that has been expanded and developed to study the behavior and properties of particles and 
materials at the atomic level. This approach involves simulating the movement and interactions of individual atoms or particles over a certain period 

Fig. 4. Changes in the HF of the designed NC according to the amount of PCL.  

Fig. 5. Changes in the TC of the designed NC according to the amount of PCL.  
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of time, providing insights into various physical, chemical, and biological phenomena. MD simulations are particularly useful for predicting system 
behavior under conditions that are difficult to access experimentally, such as extreme temps or press. Consequently, this method has become an 
important tool for designing and optimizing materials with unique properties [31–34]. LAMMPS is a widely utilized software package for conducting 
MD simulations. It is specifically designed to efficiently simulate large-scale systems containing millions or even billions of particles. The software 
offers a wide range of force fields and simulation techniques, making it versatile for various research fields [35,36]. The fundamental principle of MD 
simulation involves solving equations and Newton’s second law for individual particles. Newton’s second equation establishes the relationship be-
tween force, mass, and particle acceleration [37]: 

Fi =
∑

i∕=j

Fij =mi
d2ri

dt2 =mi
dvi

dt
(1) 

To initiate a MD simulation, the first step is to define the desired system by specifying the types and quantities of particles, their initial positions and 
velocities, as well as any constraints or boundary conditions. The subsequent step involves selecting an appropriate force field for the particles and 
system under study. A force field is a mathematical model that describes how particles interact within a system. It comprises two main components: 
bonding and non-bonding interactions. The choice of force field depends on the nature of the system and the desired level of accuracy. In each time 
step, forces acting on each particle are calculated based on the chosen force field [36,38,39]. These forces are derived from the gradient of the potential 
energy (PE) function relative to particle positions [37]: 

Fig. 6. Volume changes of the designed NC according to the amount of PCL.  

Fig. 7. Variations of the stress-strain diagram in the designed NC according to the amount of PCL.  
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Fi = − ∇Ui = −
∂U
∂ri

(2) 

In our upcoming research, we have employed the Lennard-Jones (LJ) and Coulomb potential function to investigate non-bonded interactions. The 
LJ potential accounts for van der Waals interactions between atoms and is characterized by two parameters: the strength of interaction represented by 

Fig. 8. US changes in the designed NC according to the amount of PCL.  

Fig. 9. Changes of YM in designed NC according to the amount of PCL.  

Table 1 
Atomic, thermal and mechanical outputs of the simulated NC according to the 
amount of PCL.  

PCL 
(%) 

HF (W/ 
m2) 

TC 
(W/m. 
K) 

Final 
Volume 
(nm3) 

US 
(MPa) 

YM 
(MPa) 

MSD 
(Å2) 

Tg 

(K) 

10 688.43 0.85 27311 56.32 5.99 0.25 321 
20 695.94 0.88 27492 58.14 6.11 0.26 324 
30 714.93 0.93 27825 59.15 6.23 0.28 328 
50 724.03 0.99 27913 62.23 6.29 0.31 331  
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the size of the potential well (εij), and the equilibrium distance where PE is zero (σij) [40,41] (See Table A): 

ULJ = 4εij

[(σij

r

)12
−
(σij

r

)6
]

(3)   

Table A 
LJ potential function parameters of the present particles [42,43]  

Particles ε (kcal/mol) σ (Å) 
H 0.01 3.20 
O 0.415 3.71 
C 0.3050 4.18 
N 0.415 3.995  

The values of σ and ε of each interaction between the particles were calculated utilizing Eqs. (3) and (4) [42]: 

εij =
̅̅̅̅̅̅̅εiεj

√ (4)  

σij =
σi + σj

2
(5) 

As stated earlier, the potential function utilized to determine the electrostatic forces between charged particles is the Coulomb potential function 
and is expressed by the following equation [44]: 

Uij(r) =
− 1

4πε0

qiqj

r2
ij

(6) 

Once both the system and force field are defined, we proceed to solve equations of motion for each particle. However, due to a large number of 
particles involved, it is not feasible to analytically solve equations of motion individually for each particle as it leads to numerous errors. Therefore, 
numerical solution methods must be employed to integrate equations of motion for each particle in order to simulate their behavior over time. The 
most common integration algorithm is the Verlet – velocity algorithm, which is based on the Taylor series expansion. Based on this type of algorithm, 
the position ri(t) and velocity vi(t)of the particles are calculated in each time step (t), and then in the next time steps (t + δt), utilizing the mentioned 
values, the new velocity vi(t + δt) and position ri(t + δt)of the particles are calculated. The formulation of this type of algorithm is as follows [45,46]: 

ri(t+Δt) = ri(t) + Δt vi(t) +
Δt2ai (t)

2
(7)  

vi(t+Δt) = vi(t) + Δt ai(t) +
Δt (ai (t) + ai(t + Δt))

2
(8)  

Fig. 10. Variations of the MSD in the designed NC sample according to the amount of PCL.  
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