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A B S T R A C T   

The temperature field during laser welding process plays an important role on determining the quality and 
quantity of the weld bead size, microstructure characterizations and mechanical properties of the welding 
interface in the thermal engineering applications. In this study, using the numerical simulation, the influence of 
pulse duration and frequency on the temperature distribution and velocity field in distinctive laser welding of 
stainless steel 420 (S.S 420)/stainless steel 304 (S.S 304), and Bohler 303 (B 303)/stainless steel 304 (S.S 304) 
was examined. The results of numerical modeling illustrated that shear stress of Marangoni and buoyancy force 
are the most curtail aspects in the formation of the flow of liquid metal. A novel artificial intelligence method is 
proposed to optimally predict the melting ratio, and maximum temperature of the materials. To this end, a 
combination of ANN and Particle Swarm Optimization (PSO) algorithms are employed. The PSO algorithm is 
used to optimize the architecture and training algorithm of the ANN, while the ANN is employed for the 
regression problem. Based on the results, a three-layer feed-forward architecture with sigmoid transfer functions 
having 17 and 8 neurons in the hidden layers combined with the scaled conjugate gradient backpropagation 
training scheme is recognized by the PSO as the optimal configuration. Application of optimal ANN to the 
regression problem results in an acceptable level of error for the training, validation, and test datasets. Finally, 
the optimized ANN can be utilized to anticipate the melting ratio and thereby the resultant temperature.   

1. Introduction 

All thermal industries place a great deal of importance on joining and 
cutting various pieces. Various ways of joining pieces have been put 
forth over the last few years. The utilization of beams to fuse and cut 
diverse substances has become a common technique in recent years 
(Yongbin et al., 2020). Scientists and artisans have given this method 
some thought because of the considerable heat dissipating ratio in the 
depth of the item to the width in this sort of welding. This is brought on 
by the beam’s intense focus in the welding zone and its high density. 
These distinctive qualities have made this approach popular across a 
range of industries, including construction, automotive, food industries, 

and biomedical sciences (Yang et al., 2021; Azari et al., 2021). Con-
necting different alloys to one another is one of the applications for laser 
welding (Ai et al., 2021). Due to the various qualities of the materials, 
the application of this technique has been documented in earlier studies 
(Khan et al., 2021; Algehyne et al., 2021). Elements found in both base 
metals can be found in the fusion zone. Studying the characteristics and 
alterations caused by laser parameters is crucial. Numerous numerical 
techniques have been investigated to assess welding quality. Addition-
ally, the application of numerical simulation techniques improves the 
welding process’ accuracy and quality while lowering manufacturing 
costs (Peng et al., 2021/05; Grajczak et al., 2021; Zhang et al., 2021; 
Wang et al., 2021). Due to the special characteristics of these elements, 
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computational modeling of the operation of welding 2 types of steels can 
result in an optimal weld (Wang and Rong, 2022). Because of their high 
strength and corrosion resistance, stainless steel alloys require extensive 
research. Because of this, if a perfect weld is made, it can be used to 
create tools and equipment for the manufacturing of industrial and 
medical products. 

During laser welding of the brass and stainless steel alloys, Ding et al. 
(2021) looked at how process variables affected the form of the joint and 
the temperature distribution. Their findings demonstrated that the 
liquid metal is asymmetric, which is caused by the brass alloy’s lower 
melting point, which gradually raises the molten pool volume of this 
alloy. Lin et al.’s (Lin et al., 2021) numerical analysis examined the 
temperature distribution change and size of the molten pool during the 
welding of two distinctive metals, AISI 304 and Cu. Their findings 
demonstrated that the molten pool’s and heat field’s shapes were 
asymmetric and diverged in the direction of the AISI 304 sheet. They 
also demonstrated that the main determinant of the molten pool’s size is 
the laser’s power. Dong et al. (2021) looked at how laser welding of two 
alloys, S.S. 308 and brass, affected the temperature distribution and 
melting ratio. Their findings demonstrated that utilizing this numerical 
approach can lower mistake, expense, and time. Yu et al. (2021) looked 
at the welding characteristics in a laser welding procedure between 
SS308 and brass. Their findings demonstrated that an asymmetric 
melting pool had formed, in which the melting of brass had a greater 
share, due to the low melting temperature and increased thermal con-
ductivity of brass. Li et al.’s (Li et al., 2021) computational analysis 
examined the mechanical characteristics and microstructure of two 
types of metals, steel and brass. Their findings demonstrated the high 
efficiency of laser energy as a bonding waveform parameter in terms of 
waveform, wavelength, and amplitude. Additionally, it was discovered 
that the ideal process mode has weldability among the flyer and the 
material plate at a flight distance of 0.2 mm. The results of a study by Lu 
et al. (2021) revealed that the dimensions of waveform in the junction 
zone rise with enhancing laser intensity and along the direction of 
welding. This was demonstrated by the conclusion of their smooth 
particle hydrodynamics (SPH) modeling. Normal stress, jet speed, and 
horizontal welding speed were all related to this discovery. Utilizing the 
central composite design numerical approach, Saha et al. (Saha and 
Waghmare, 2020) adjusted the laser welding settings for the S.S. 316. 
Their findings supported the notion that the quality of the weld is 
significantly influenced by the laser power, welding speed, and focal 
distance. Nguyen et al. (2020) looked studied the fusion zone’s tem-
perature field and microstructure while using a laser to weld an 
austenitic stainless steel alloy to copper. Their findings demonstrated 
that raising the welding speed considerably lowers cracks in the welding 
zone and lowers the temperature. Due to the greater temperatures for 
the copper and steel, it was also discovered that raising the laser’s power 
causes the cracks in the fusion area to move to the steel base. Applying 
Taguchi-based GRA computational modeling, Prabakaran et al. (Pra-
bakaran and Kannan, 2019) improved the procedure variables in the 
AISI 1018 and AISI 316 process of welding. Their findings demonstrated 
that the factors of welding speed, laser power, and focal length are useful 
in assessing the weld quality. They used this technique to demonstrate 

that the greatest tensile strength is achieved when welding is done both 
after heat treatment and after welding. Bhatt et al.’s (Bhatt and Goyal, 
2018) investigation looked at how process variables affected the effec-
tiveness of laser welding between brass and S.S 316. Outcomes indicated 
that when energy increased, each metal’s penetration depth also 
increased, with brass alloys having the greatest rise. Huang et al.’s 
(Huang et al., 2018) numerical analysis investigated the laser beam 
welding quality of steel and aluminum alloys. Their findings supported 
the notion that a keyhole might become more porous and unstable by 
enhancing the fluid flow behind it. 

In a study conducted by Kumar et al. (2017), an examination was 
undertaken to assess the impact of the laser beam’s angle of incidence on 
the welding procedure of austenitic stainless steel. The findings of their 
investigation unveiled that diminishing the angle of influence led to a 
noteworthy alteration in the configuration of the molten pool at an 
elevated position. The overall geometric shape of the molten pool is 
associate on the deflection in the angle of influence. The influence of 
laser welding variables on the welding modality of stainless steel and 
copper was studied by Chen et al. (2015). Their findings demonstrated 
that the size of the HAZ is significantly influenced by the laser’s char-
acteristics. It was also discovered that joint hardness is decreased by 
copper melting. Li et al. (2014a) looked at the joint quality between S.S. 
316L and H62 brass alloys. Their findings illustrated that the brass 
overlap structure on the steel improved the performance of the welded 
joints and prevented the presence of intermetallic composition within 
the joint. The impact of the beam’s intensity on dissimilar laser welding 
of stainless steel and brass was studied in a different investigation by Li 
et al. (2014b). Their findings showed that the weld formed had more 
proper microstructure and mechanical qualities when the power was 
lower than 1846 W. Sasaki et al. (Sasaki and Ikeno, 2011) looked at the 
joining performance of steel and brass during a welding of beam laser 
technique. Their findings shown that a high-quality weld could be ob-
tained by moving the laser’s point of emission to brass. Dong et al.’s 
(Dong and Xiao, 2009) investigation of the effectiveness of laser welding 
on brass and copper. The outcomes demonstrated that this technique can 
be used to produce a penetration weld of a satisfactory quality. Addi-
tionally, it was discovered that using the best process variables can 
result in a weld of the appropriate quality. Galun et al.’s (Galun et al., 
2002) investigation into the laser welding technique’ ability to weld 
stainless steel and brass alloys. The findings demonstrated that the 
steel-brass weld strength is superior to the brass-brass weld strength. It 
was also discovered that using this technique produced welds that were 
sturdy enough to resist the tensile process. With a pulsed Nd: YAG laser, 
Geng et al. (2019) performed distinct laser beam welding of S.S. 420 and 
S.S. 304 to determine the mechanical characteristics, microstructure, 
and temperature distribution of the welded zone. Investigations were 
done into how pulse width and frequency affected the temperature 
change in the fusion zone. According to their findings, the heating and 
cooling cycles had essentially identical variations caused by the laser 
pulse time and frequency. 

The bulk of previous studies has been focused on one method either 
numerical simulation or ANN. At this study pulsed laser welding has 
been modeled through numerical simulation. Many boundary 

Fig. 1. Laser welding process.  
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conditions and laser beam at pulse mode have been considered to 
improve the numerical model accuracy. On the other hand, above ANN 
modeling based on PSO optimization algorithm was selected to predict 
the temperature and melt pool dimension. Additionally, there are few 
studies that investigated both temperature and melt pool geometry at 
different materials set. 

The regressors are the welding speed, frequency, pulse duration, 
current, and nozzle distance. The regressands were selected the melting 
ratio, and maximum temperature. This approach was selected for 
another set laser welding experiment (S.S 304 and bohler 303 steel) with 
different materials properties to assess the validity of optimized ANN 
approach. 

2. Numerical simulation 

The correlation between the temperature differential and the flow of 
molten metal in the liquid zone substantially impacts the welded alloy’s 
quality and mechanical characteristics. Consequently, correctly 

forecasting all aspects that impact temperature and molten flow can 
enhance welding quality while saving money. In order to carry out nu-
merical simulations of laser welding, a transient modeling based on the 
finite volume approach was implemented. The thermal energy model 
and thermophysical parameters were created using a numerical code 
that incorporated temperature changes into account. Fig. 1 depicts the 
sheets dimensions as well as an illustration depiction of the laser 
welding. The temperature history was extracted to investigate diverse 
factors of laser welding and validate the findings, as depicted in Fig. 1. 

One of the fundamental challenges in solving equations involving 
partial derivatives lies in establishing a suitable grid. Creating an 
appropriate grid plays a crucial role in simplifying the solution of a set of 
differential equations. Conversely, an inadequate grid setup can lead to 
instability or convergence failure in computations. Given that most 
gradients occur near the laser beam due to the boundary layer, it is 
possible to effectively represent these variations by increasing the den-
sity of mesh points in these regions. The critical consideration is to 
determine an optimal number of mesh elements. 

It should be noted that reducing the size of elements and increasing 
their quantity will result in a prolonged solution process. Conversely, 
employing more prominent mesh elements diminishes the accuracy of 
calculations and the ability to observe phenomena. As depicted in Fig. 2, 
the quantity of structure grid cells derived from the grid analysis 
amounted to about 600,000. Table 1 outlines the element structure of 
stainless steel 304 and 420. 

2.1. Modeling the laser welding process 

During the keyhole laser welding process, creating a plasma cloud on 
the surface sheet of the molten pool prohibits the laser beam’s distri-
bution energy from accomplishing the keyhole. As an outcome, a certain 
amount of the heat input is absorbed by the workpiece’s surface, known 
as the inverse absorption phenomenon. The keyhole wall absorbs the 
remaining radiation by Fresnel absorption (Ducharme et al., 1994). 
Gaussian elliptic and cylindrical heat flux were used to convey the dis-
tribution of absorbed thermal energy at various places throughout the 
workpiece. The thermal model, as shown in Fig. 3, demonstrates the 
setup used. Eqs. (1)–(3) (Ai et al., 2017; Xia et al., 2014) include the 
equations regulating these elliptic and cylindrical heat sources. 

qv(x, y, z)=
6f1ηp

πr2
v d(1 − exp (− 3))

exp
(

− 3
(x2 + y2)

r2
v

)(
mz + rv

md + 2rv

)

(1)  

qf (x, y, z)=
6
̅̅̅
3

√
f2ff ηp

af bcπ
̅̅̅
π

√ exp

(

− 3

(
x2

a2
f
+

y2

b2 +
z2

c2

))

(2)  

Fig. 2. Grid elements.  

Table 1 
Elements ratio in 304 and 420 stainless steel (Casalino et al., 2018; Baghjari, 2013).  

Arrangement  C% Cr% Mn% P% Si% Ni% Fe% 

Weight S.S 304 0.08 18.4 1.06 0.03 0.34 8.9 Balanced 
S.S 420 0.15 13 0.17 0.04 0.46 0.13 Balanced  

Fig. 3. Thermal model.  
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In the above equations, qv , qr, qf are heat sources, p is the laser en-
ergy, fr, ff are heat flux coefficients in the fore and rear of the laser beam, 
f1, f2 are the beam energy factors, and af , ar, b, c, d are thermal model 
coefficients which is depicted in Fig. 3. 

2.2. Governing equations 

The fluidic motion of molten metal within the pool generates 
convective heat transfer in laser welding models. As an outcome, the 
momentum and energy equations must be included in the laser welding 
model. The liquid fraction is calculated using the following equation to 
find the areas filled by molten and solid materials. During the freezing or 
melting of the substance, the liquid fraction takes on values ranging 
from 0 to 1. The force resulting from the material’s phase change can be 
adequately evaluated by incorporating the liquid fraction into the mo-
mentum equation. 

fL =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 T ≤ Ts

T − Ts

Tl − Ts
Ts < T < Tl

1 T ≥ Tl

(4) 

The equations were discretized by incorporating several assump-
tions. It was assumed that the fluid flow was incompressible, according 
to the fundamental laws of Newtonian physics, and exhibiting a laminar 
feature. Furthermore, the impact of liquid metal evaporation was 
considered negligible. Finally, the study began at a temperature of 25 ◦C 
to serve as a reference point. These assumptions were the foundation for 
discretizing the equations and making following computing techniques 
easier. 

Continuity equation: 

∂ρ
∂t

+∇.
(

ρU→
)
= 0 (5) 

Momentum equation: 

∂
(

ρU→
)

∂t
+∇.

(
ρU→U→

)
= − ∇p+∇.

(
μ∇U→

)
+ ρ g→−

μ
K

(
U→
)

(6) 

Energy equation: 

∂(ρH)

∂t
+∇.

(
ρU→H

)
=∇.(k∇T) + q (7) 

The variables ρ,H, t, p, U→, k, g→,K and μ represent quantities such as 
density, enthalpy, time, pressure, velocity, thermal conductivity coeffi-
cient, acceleration, coefficient of Darcy resistance and viscosity, 
respectively. 

2.3. Boundary conditions 

The surface boundary condition: 

k
∂T
∂ n→

= − εσ
(
T4 − T4

∞

)
− h(T − T∞) + qs (8)  

Where ε is the coefficient of emission, σ is the coefficient of Ste-
fan–Boltzmann, T∞ is the temperatures in the vicinity, and h is the co-
efficient of convection. 

Shear stress: 

μ ∂u
∂z

= −
∂γ
∂T

∂T
∂x

(9)  

μ ∂v
∂z

= −
∂γ
∂T

∂T
∂y

(10) 

The stipulation concerning the lower and lateral surfaces was posited 
as follows, defining the boundary condition: 

k
∂T
∂ n→

= − εσ
(
T4 − T4

∞

)
− h(T − T∞) (11)  

2.4. Thermophysical characteristics 

Welding demonstrates a considerable parameter variation in direct 
correlation with temperature. As such, to achieve accurate simulation of 
pulsed laser welding, it becomes imperative to delineate specific ther-
mophysical properties relative to temperature. Table 2 showcases the 
comprehensive thermophysical characteristics associated with stainless 
steel 304 and stainless steel 420 in this context. 

3. Laser welding experiments 

Dissimilar welding with 750W Nd:YAG laser were conducted on 

Table 2 
Thermophysical characteristics (Zhang et al., 2016; Mills, 2002; Pehlke et al., 1982; Grimvall, 1999).  

Nomenclature Symbol Material Value  Unit 

Solid phase density ρs S.S 304 ρs = 8020 − 0.501(T − 298) kg m− 3 

S.S 420 7860  
Liquid phase density ρl S.S 304 ρl = 6900 − 0.8(T − 1727) kg m− 3 

S.S 420 7000  
Solidus temperature Ts S.S 304 1673  k 

S.S 420 1727  
Liquidus temperature Tl S.S 304 1727  k 

S.S 420 1783 
Temperature in the surrounding environment T∞  298  k 
Thermal conductivity k S.S 304 k = 10.33+ 15.4× 10− 3T − 7× 10− 7T2 

k = 355.93 − 196.8× 10− 3T 
k = 6.6+ 12.14× 10− 3T 

298 ≤ T ≤ 1633 
1644 ≤ T ≤ 1672 
T > 1793 

W m− 1k− 1 

S.S 420 k = 20+ 61.5× 10− 4T 
k = 133.4 − 594.9× 10− 4T 
k = 6.5+ 116.8× 10− 4T 

T < 1727 
1727 ≤ T ≤ 1783 
T > 1783 

Specific heat capacity c S.S 304 c = 0.443+ 2× 10− 4T − 8× 10− 10T2 298 ≤ T ≤ 1727 J g− 1k− 1 

S.S 420 c = 1.92 − 1.587× 10− 2T − 2 
0.569 

1150 ≤ T ≤ 1173 
T > 1173 

Latent heat Lm S.S 304 2.90× 105  J kg− 1 

S.S 420 3.04× 105  

Stefan-Boltzmann coefficient σ  5.67× 10− 8  W m− 2k− 4 

viscosity μ  0.0007  kg m− 1s− 1  
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different base materials configuration including bohler 303 steel with 
austenitic stainless steel 304. The samples were selected with di-
mensions (50 × 25 × 1.5 mm). The chemical composition of materials is 
presented in Table 3. The raytools laser welding head BW210 with Co-
axial nozzle blowing argon gas for protecting melt pool region was 
utilized. 

A CNC table with three-axis (2 axis interpolates) was used for the 
laser beam motion. For measurement of melt pool depth and width, the 
welded samples were prepared under ASTM E3 for metallography tests. 
The optical microscope, model GX53 was used for measuring di-
mensions of melt pool. Two K-type thermocouples with 1 mm tip 
diameter were utilized for temperature measurement through Advan-
tech USB-4718. The experimental tests results presented in Table 4. 

4. Results and discussions 

When various input elements are considered, a precise assessment of 
temperature, velocity field, and the weld bead size may greatly impact 
weld quality. To obtain the necessary molten pool qualities in dissimilar 
material welding, the appropriate range of laser parameters must be 
determined while considering the specific thermal properties of alloys. 
As a result, this section dives into how the factors of laser welding affect 
the distribution of temperature and velocity, as well as the size of the 
weld bead. The ability to predict temperature dispersion allows for the 

modulation of fundamental microstructural features. As a result, several 
pulse lengths and frequencies were used to create a comprehensive 
temperature record. 

4.1. Impact of pulse duration on temperature field 

The temporal extent of the pulse duration exerts a profound influ-
ence on the weld’s overall quality. Through judicious manipulation of 
the pulse duration, one can effectively avert the emergence of fractures 
brought about by expeditious solidification. A comprehensive analysis 
of the pulse width’s repercussions is expounded upon in Table 5, 
delineating the pertinent parameters for scrutiny. 

An examination was conducted to evaluate the impact of variations 
in pulse duration on the temperature distribution. The investigation 
focused on analyzing the temporal temperature profile at various dis-
tances perpendicular to the workpiece’s edge, particularly at a location 
25 mm away. Fig. 4 depicts this analysis. Upon careful examination of 
Fig. 4, it becomes apparent that a decrease in pulse width results in 
decline temperatures at different intervals while the pattern of tem-
perature oscillation remains unaffected. This is evident from the sig-
nificant rise down of approximately 490 ◦C in the maximum 
temperature at the junction of the two parts. However, a more detailed 
examination of the figure reveals that as the pulse width increases, the 
slope of temperature changes at a distance of 1 mm from the line of 
welding also increases. The dissimilarity in the thermal conductivity 
coefficients of stainless steel 304 and 420 accounts for the temperature 
disparity between them. The lower thermal conductivity coefficient of 
stainless steel 304, compared to stainless steel 420, restricts thermal 
penetration into stainless steel 304, resulting in higher temperatures 
near the laser beam than stainless steel 420. 

Nevertheless, it is essential to note that when the beam of laser has 
not yet surpassed the 25 mm mark from the workpiece’s edge, the 
temperature of stainless steel 420 exceeds that of stainless steel 304 due 

Table 3 
Elements ratio in 304 stainless steel and Bohler 303 (Casalino et al., 2018; Baghjari, 2013; https://www.bohlersteels.co.uk).  

Arrangement  C% Cr% Mn% P% Si% Ni% Fe% 

Weight S.S 304 0.08 18.4 1.06 0.03 0.34 8.9 Balanced 
Bohler 303 0.27 14.5 0.65 – 0.3 0.85 –  

Table 4 
Experimental laser welding conditions.  

Test 
Number 

Welding Speed (mm/ 
min) 

Frequency 
(HZ) 

Pulse duration 
(ms) 

Current 
(A) 

Nozzle Distance 
(mm) 

Melting Ratio (bohler 303/S.S 
304) 

Max. Temperature 
(◦C) 

Bohler 
303 

S.S 
304 

1 350 12 8 120 1 0.48 211 191 
2 400 15 8 130 2 0.58 228 198 
3 350 12 8 120 3 0.82 218 186 
4 400 15 8 130 4 0.68 239 186 
5 300 10 6 120 2 0.76 212 163 
6 350 12 8 120 3 0.71 215 166 
7 250 10 8 100 3 0.78 205 146 
8 400 15 8 130 4 0.58 224 195 
9 300 10 6 120 2 0.61 204 181 
10 300 10 6 120 4 0.78 185 125 
11 450 20 8 130 3 0.78 205 145 
12 400 15 8 130 2 0.9 190 143 
13 350 12 8 120 5 0.83 159 119 
14 350 12 8 120 3 0.7 155 114 
15 350 12 8 120 3 0.73 230 181 
16 350 12 8 120 3 0.80 228 172 
17 300 10 6 120 4 0.85 195 152 
18 500 20 12 130 1 0.92 248 198 
19 500 20 12 130 1 0.81 226 173 
20 450 20 8 130 4 0.64 182 148 
21 250 10 8 100 2 0.51 196 126  

Table 5 
Laser welding parameters to investigate the impact of pulse duration.  

Case Speed 
(
mm/s

)
Pulse duration 
(ms)

Frequency 
(Hz)

Laser 
energy 
(A)

Focal position 
(mm)

1 3.1 8 15 130 0 
2 3.1 12 15 130 0  
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to the small thermal diffusivity of stainless steel 420 at lower tempera-
tures. Fig. 4e and 4f compare the temperature profiles acquired from 
numerical modeling and the experimental investigation conducted by 
Geng et al. (2019), Specifically, at an acquired interval of 2 mm from the 
laser beam’s capital. The results from the numerical simulations align 
well with the experimental data, thus validating the accurate 

characterization of properties and the thermal model. 
The contour diagram in Fig. 5 depicts the thermal distribution at 

workpiece’s perimeter at the extremity of the pulse duration. It is clear 
that when the pulse duration decline, decreasing the pulse energy, the 
temperature at the nucleus of the molten pool rises down by around 
245 ◦C. Also, with the decrease in pulse duration, it is observed that the 

Fig. 4. Temperature changes as a function of time at pulse duration of 8 and 12 ms.  

Fig. 5. Contour of temperature at pulse duration of a) 8ms and b) 12ms.  
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area affected by heat has declined significantly. 

4.2. Impact of frequency on temperature field 

Table 6 presents the data Designed to examination the impact of 
frequency on the field of temperature, velocity, and size of the weld 
bead. By skillfully using the frequency during laser welding, one can 
proficiently control the energy input to the sheet and the thermal cycle. 
Therefore, this section investigated the influence of frequency on tem-
perature and velocity field. 

Fig. 6 illustrates the temporal temperature profiles corresponding to 

15 Hz and 20 Hz frequencies. The obtained data unveils that decreased 
frequency leads to decline temperatures at varying positions. Moreover, 
lower frequencies give rise to reduced temperature fluctuations across 
different time intervals. The figure shows that the molten pool reaches 
its highest temperature at about 4500 and 5150 ◦C for 15 and 20 fre-
quencies, respectively. As the distance from the central beam expands, 
the maximum temperature is observed later due to heat diffusion in the 
surrounding region. At a frequency of 15 Hz, an approximate tempera-
ture difference of 60 ◦C exists between stainless steel 304 and 420 sit-
uated 1 mm away from the workpiece joint. In contrast, at a higher 
frequency, this disparity amounts to 75 ◦C. Fig. 7 displays the temper-
ature field of the sheet for frequencies of 15 Hz and 20 Hz. The distri-
bution of temperatures is skewed towards stainless steel 420 due to its 
high thermal diffusivity. 

4.3. Impact of pulse duration on velocity field 

Because of surface tension, the molten pool generates liquid metal 
flow. This flow is caused by the force of surface tension, which fluctuates 

Table 6 
Laser welding parameters to investigate the impact of frequency.  

Case Speed 
(
mm/s

)
Pulse duration 
(ms)

Frequency 
(Hz)

Laser 
energy 
(A)

Focal position 
(mm)

3 6.2 9 15 130 0 
4 6.2 9 20 130 0  

Fig. 6. Temperature changes as a function of time at frequency of 15 and 20 Hz.  
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in reaction to temperature variations. As a result, temperature oscilla-
tions appear on the molten pool’s surface. These temperature changes 
cause an imbalance in surface tension along the workpiece, forming 
Marangoni flow within the molten area. With a negative Marangoni 
coefficient, the surface tension decreases as temperature rises, forcing 
the melt to transfer from the hot area to the mushy region. 

The phenomenon of surface tension decreases as temperature in-
creases on account of the intrinsic surface-active components in steel. 
Fig. 8 depicts the vector pattern found at the cross-sectional junction of 
the sheet at different pulse durations. Significantly, a conspicuous 
diversion of the molten metal flow towards the sheet possessing a sub-
stantially higher temperature gradient becomes apparent due to the 
pronounced discrepancy in temperature gradients between stainless 

steel 304 and 420. Fig. 9 shows the vector pattern found at the cross- 
sectional junction of the sheet at different pulse frequencies. The 
depicted illustration demonstrates that alterations in the temporal dy-
namics of the pulse yielded negligible implications on the trajectory of 
melt motion, solely resulting in variations in velocity. 

4.4. Impact of frequency on velocity field 

As the temperature increases, the presence of surfactant elements 
within stainless steel leads to a reduction in surface tension. An elevation 
in the shear stress exerted on the sheet’s surface as a consequence of the 
gradient in surface tension prompts an augmentation in the breadth of 
the liquefied reservoir. The 9th figure elucidates the vector of velocity. It 

Fig. 7. Contour of temperature at frequency of a) 15 Hz and b) 20 Hz.  

Fig. 8. Velocity vector at pulse duration of a) 8ms and b) 12ms.  

Fig. 9. Velocity vector at frequency of a) 15 Hz and b) 20 Hz.  
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is discernible that as the frequency amplifies because of the augmenta-
tion in the temperature differential, the velocity of the molten metal 
escalates. By increasing the frequency by 5 Hz, the melt flow velocity has 
increased by 23%. Consequently, this engenders an upsurge in heat 
conduct by displacement within the liquefied area and an enlargement 
in the area affected by thermal influence. 

4.5. Impact of pulse duration on molten pool 

An accurate estimate and projection of weld bead size under various 
laser settings might provide helpful information for attaining the 
required connectivity between the two metallic sheets. This predictive 
analysis has the potential to improve welding precision and 
effectiveness. 

The enlargement of pulse duration engenders an amplification in 
both the magnitude of the molten area and the heat-affected region, 
owing to the protracted transfer of heat. Fig. 10 visually represents the 
proportion of mass of liquid. The coefficient of thermal conductivity 
inherent in stainless steel 304 yields insignificant heat dissipation to the 
adjacent region. Consequently, the weld bead and the heat-affected area 
dimensions exhibit superior qualities for stainless steel 304 compared to 
stainless steel 420. 

4.6. Impact of frequency on molten pool 

The size and arrangement of the liquid pool significantly impact the 
weld integrity between the two constituents. As mentioned earlier, the 
disparate thermal characteristics of the workpieces result in an uneven 
temperature dispersion both on the surface and within the internal 
sections of the workpieces. Accordingly, as illustrated in Fig. 11, the 
liquefied pool manifests an asymmetrical form when observed in a cross- 
sectional view. It is worth noting that by lowering the frequency, the 
duration required for the absorption of thermal energy decreases, 
leading to inadequate penetration of the molten flow into the deeper 
regions of the workpiece. 

5. The artificial intelligence approach to detect the optimal ANN 
configuration 

Artificial Neural Networks (ANNs) are appropriate for regression 
problems due to their ability to approximate non-linear functions, 
adaptability, generalization to unseen data, representation learning 
from raw input data, parallel processing, robustness to noise and 
incomplete data, and support for incremental learning (Alsheikhy, 
2022). ANNs can effectively capture complex relationships, handle 
non-linearity, learn from imperfect data, and adapt to various real-world 
scenarios, making them highly suitable for function approximation tasks 
(Chen, 2022; Gaur et al., 2022). The universal approximation theorem 
states that there are ANNs with a finite number of neurons that can 
approximate any continuous function to any desired level of accuracy, 
given the appropriate activation function and a sufficiently number of 
neurons. 

While the universal estimation theorem assurance the existence of an 
ANN that can approximate the considered function to any desired level 
of accuracy, it does not specify a particular ANN architecture or learning 
algorithm. The main reason is due to varying problem complexities, 
input data characteristics, target variable properties, available data 
sizes, and performance trade-offs. Therefore, each regression problem 
requires a tailored approach considering several factors. Customizing 
the ANN’s architecture and training algorithm based on these factors 
ensures accurate function approximation and optimal performance for 
each specific regression task. 

The following properties can be considered for ANNs used for the 
regression problems (Hanif et al., 2022; Liu and Lu, 2022).  

• Feed-Forward (FF) and Cascade-Forward (CF) networks are two 
common types of neural network architectures used for regression 
analysis. A Feed-Forward network consists of input, hidden, and 
output layers, and information flows in a forward direction. It is 
effective for capturing complex relationships and approximating 
functions. Cascade-Forward networks, on the other hand, dynami-
cally add neurons during the learning process, allowing the network 
to adapt and expand its complexity. They employ a cascade 

Fig. 10. Molten pool at pulse duration of a) 8 ms and b) 12ms.  

Fig. 11. Molten pool at frequency of a) 15 Hz and b) 20 Hz.  
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correlation learning algorithm and automatically determine the 
network structure. The choice between FF and CF networks depends 
on factors such as problem complexity and available training data.  

• In neural network architectures, there is no restriction on the number 
of layers that can be used. This means that different structures can 
have varying numbers of layers, providing flexibility in designing 
networks. Additionally, within a given network structure, each layer 
can have a different number of hidden neurons. This allows for 
customization and adaptability in capturing the complexity and re-
lationships of the data. The ability to have varying numbers of layers 
and hidden neurons in different layers enables neural networks to 

Table 7 
The possible configurations for the ANN used for the regression problems.  

The design parameter The configurations 

Architecture Feed-Forward or Cascade-Forward networks 
Number of layers 2 or 3 
Hidden neuron of any 

layer 
6 to 20 

Activation Function the sigmoid function or the hyperbolic tangent function 
Supervised learning 

method 
the Levenberg-Marquardt backpropagation, bayesian 
regularization backpropagation, or scaled conjugate 
gradient backpropagation  

Table 8 
The PSO factors used in this examination.  

Parameter Values 

Swarm Size N 50 
Maximum Iteration 100 
acceleration coefficient c1 1 
acceleration coefficient c2 1 
Inertia Weight ω 0.5  

Fig. 12. The penalty function evaluated during the optimization process.  

Table 9 
The optimal ANN configurations found by the PSO.   

Parameter Values 

The ANN 
configuration 

Architecture Feed-Forward 
Number of layers 3 
Hidden neurons 17, 8 
Activation Function sigmoid 
Supervised learning 
method 

scaled conjugate gradient 
backpropagation 

The penalty value  0.0416  

Fig. 13. The optimal architecture obtained by the PSO.  
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handle a wide range of problems, accommodate different levels of 
complexity, and effectively learn from diverse datasets.  

• Neural networks offer a variety of activation functions that can be 
used inside the neurons. Activation functions characterize the output 
of a neuron based on the weighted sum of its inputs. Different acti-
vation functions have distinct properties and impact the network’s 
behavior and learning capabilities. Common activation functions 

include the sigmoid function and the hyperbolic tangent function. 
The choice of activation function depends on the specific problem, 
the desired behavior of the network, and the characteristics of the 
data. By selecting an appropriate activation function, neural net-
works can effectively model non-linear connections and capture 
convened patterns in the data. 

Fig. 14. The regression diagram for the optimized ANN.  

Fig. 15. The performance diagram for the optimized ANN.  Fig. 16. The error histogram for the optimized ANN.  
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• In the field of neural networks, there exists a wide range of training 
algorithms that are used to adjust the weight and bias matrices 
within the network. These algorithms aim to optimize the network’s 
performance by minimizing the difference between the predicted 
outputs and the actual targets during the training process. Some 
popular training algorithms include the Levenberg-Marquardt 
backpropagation “trainlm”, bayesian regularization back-
propagation “trainbr”, and scaled conjugate gradient back-
propagation “trainscg”. The choice of training algorithm depends on 
factors such as the problem complexity, available training data, 
computational resources, and desired convergence speed. Each al-
gorithm has its own strengths and limitations, and the selection of 
the appropriate training algorithm plays a crucial role in achieving 
optimal performance and accuracy in neural network training. 

As can be seen, several ANN configurations can be selected for any 
regression problem. To select the proper configuration, there may be 
two general approaches.  

• When selecting the properties of an ANN, experts follow a systematic 
approach. They analyze the problem, determine the network type, 
select an appropriate activation function, design the architecture 
with the desired number of layers and neurons, choose a suitable 
training algorithm based on the problem’s characteristics, employ 
regularization techniques to prevent overfitting, evaluate perfor-
mance using cross-validation, and iteratively refine the network 
through experimentation. Expertise in neural networks, data anal-
ysis, and domain knowledge is crucial for making informed decisions 

and optimizing the network for accurate predictions and desired 
performance.  

• Artificial Intelligence (AI) can assist in selecting the properties of an 
Artificial Neural Network (ANN) by analyzing data, automating ar-
chitecture search, optimizing hyperparameters, employing rein-
forcement learning, automating evaluation and comparison, and 
integrating expert knowledge. AI techniques provide data-driven 
insights, automate optimization processes, and enable efficient 
exploration of the ANN design space. This integration of AI and ANN 
property selection enhances the effectiveness and efficiency of 
decision-making, facilitating the design of optimized neural net-
works for various tasks. 

In this paper, the second approach is considered. A novel AI model is 
proposed to find the optimized architecture and training algorithm of 
the ANN for the considered regression problem (Ahmad, 2022; Khan 
et al., 2022; Deng et al., 2022). Table 7 shows the possible choices for the 
ANN used for the regression problems. As can be seen, there are 2880 
possible combinations. Obviously, it is not possible to try all the possible 
combinations. Therefore, an optimization algorithm is needed to find 
the best ANN configuration by changing the design parameters. 

6. The optimal artificial neural network 

6.1. The regression problem 

In this study, the laser welding of the following materials is 
investigated. 

Fig. 17. The influence of the frequency and pulse duration for laser welding of S.S 420/S.S 304.  

Fig. 18. The influence of the frequency and pulse duration for laser welding of B 303/S.S 304.  
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• Stainless steel 420 (S.S 420) and stainless steel 304 (S.S 304) (Geng 
et al., 2019).  

• Bohler 303 (B 303) and stainless steel 304 (S.S 304). 

The regressors are the welding speed, frequency, pulse duration, 
current, and nozzle distance. The speed of welding ranges from 250 to 
500 mm/s. The frequency of 10–20 Hz is investigated. The pulse dura-
tion of 6–12 ms is examined. The current in the interval of 100–130 A is 
tested. The distance of nozzle of 1–5 mm is studied. The regressands are 
the melting ratio, and maximum temperature for the materials. There 
are 21 experiments for any couple of materials with similar regressor 
combinations. 

6.2. The optimization algorithm 

In this paper, PSO algorithm is utilized to find the optimal ANN 
configuration. The PSO algorithm is a population-based optimization 
technique that simulates the collective behavior of particles in a search 
space. In PSO, a group of particles represents potential solutions within a 
search space, with each particle navigating the space by adjusting its 
position and velocity based on its own experience and the experiences of 
neighboring particles. By iteratively updating the positions and veloc-
ities of the particles, PSO seeks to find the optimal solution by opti-
mizing a fitness function. Through continuous exploration and 
exploitation of the search space, the PSO efficiently converges towards 
promising regions, enabling the discovery of optimal or near-optimal 
solutions. 

The algorithm begins by initializing a population of particles, where 
each particle represents a potential solution to the optimization prob-
lem. The particles are assigned random positions and velocities within 
the search space. During each iteration, known as a “generation”, the 
particles update their positions and velocities based on their own ex-
periences and the information shared by neighboring particles. The 
position update is influenced by two factors: the particle’s own best- 
known position, called the “personal best”, and the best-known posi-
tion discovered by any particle in the swarm, called the “global best”. 
The velocity update is determined by a weighted combination of the 
particle’s current velocity, its cognitive component, and its social 
component. These components are controlled by acceleration co-
efficients, which determine the balance between exploration and 
exploitation. This algorithm can be represented as follows: 

vi
j(t+ 1)=ωvi

j(t)+ c1r1(t)
(
pbesti

j − xi
j(t)
)
+ c2r2(t)

(
gbestj − xi

j(t)
)

(12)  

xi
j(t+ 1)= xi

j(t) + vi
j(t+ 1) (13)  

Where vi
j(t) is the velocity of particle, xi

j(t) is the current position of 
particle, pbestij is the personal best position of particle, gbestj is the global 
best position, ω is the inertia weight, and c1 and c2 are acceleration 
coefficients. 

As the algorithm progresses, particles explore the search space, 
continuously updating their positions and velocities. The aim is to 
converge towards the optimal solution by iteratively refining the per-
sonal and global best positions. The algorithm terminates either when a 
predetermined number of generations is reached or when a termination 
criterion (e.g., a desired fitness level) is met. 

In this paper, the penalty function is defined as follows: 

P= a|A − 1| + b|B| − c(R − 1) (14)  

Where A, B, and R are the slope, the y-intercept, and the regression value 
of the regression plot, respectively. The constants a, b, and c are chosen 
based on the importance of A, B, and R. In this paper, the following 
values are employed: 

a = 1
b = 1e − 3

c = 1
(15) 

The PSO parameters are important because they directly influence 
the algorithm’s performance, balance between exploration and exploi-
tation, problem-specific adaptation, avoidance of premature conver-
gence or stagnation, and computational efficiency. By carefully tuning 
these parameters, researchers and practitioners can enhance the algo-
rithm’s capability to detect optimal or near-optimal solutions, adapt to 
different problem characteristics, prevent premature convergence, and 
improve computational efficiency. The PSO parameters used in this 
study are presented in Table 8. 

6.3. Results of Particle Swarm Optimization 

The penalty function of Eq. (14) evaluated during the optimization 
process is depicted in Fig. 12. As can be seen, the global best penalty 
values are converged after a few iterations of the PSO algorithm. In other 
words, the particles have recognized the global best position. The 
optimal solution discovered by the PSO, namely the optimal ANN 
configuration and the corresponding penalty value is reported in 
Table 9. Also, the optimal architecture obtained by the PSO is illustrated 
in Fig. 13. 

6.4. Results of the optimal ANN 

A regression plot is a visual representation that compares the pre-
dicted outputs of the ANN with the actual target values in a scatter plot. 
The plot helps evaluate the performance of the ANN by examining the 
relationship between the predicted and target values. Ideally, the data 
points should align closely along a straight line, indicating a strong 
correlation. The training plot helps monitor the model’s performance on 
the training data and assess how well it captures the underlying patterns. 
The validation regression plot, on the other hand, is generated using a 
separate validation dataset that is not used for training. By analyzing the 
plot, one can halt the training process to preserve the model general-
ization, and prevent the over-fitting. The construction of the test 
regression plot entails utilizing a separate test dataset that remains un-
tapped during the training or validation phase. This approach facilitates 
a conclusive evaluation of the model’s efficacy on entirely novel data, 
thereby assessing its aptitude to generalize to previously unseen in-
stances. Moreover, it furnishes an unbiased metric to gauge the model’s 
effectiveness objectively. The regression plot for the optimized ANN is 
shown in Fig. 14. As can be seen, the ANN is almost perfect for the 
prediction of the outputs. 

A performance plot for an ANN summarizes the model’s performance 
during training by evaluating the Mean Squared Error (MSE) for the 
training iterations (epochs). It includes a training performance curve, 
showing the model’s progress on the training data, and a validation 
performance curve, indicating its ability to generalize to unseen data. 
The plot helps identify convergence, overfitting, and informs optimiza-
tion decisions. The performance for the optimized ANN is illustrated in 
Fig. 15. 

The error histogram for an ANN provides a summary of the distri-
bution of prediction errors made by the model. It visualizes the fre-
quency or count of errors at different magnitudes or ranges. The 
histogram helps understand the accuracy and precision of the ANN’s 
predictions by examining the distribution of errors. It allows identifi-
cation of any systematic biases or trends in the errors, such as under-
estimation or overestimation. By analyzing the error histogram, one can 
gain insights into the model’s performance, assess the overall quality of 
predictions, and identify areas for improvement. The error histogram for 
the optimized ANN is illustration in Fig. 16. As can be seen, the error 
histogram shows that the optimal ANN has an allowable level of error 
because the majority of errors are concentrated within the central bins. 
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The error distribution does not exhibit significant biases or outliers that 
could indicate major flaws in the model’s performance. 

Ultimately, the enhanced artificial neural network (ANN) possesses 
the potential to be employed in the estimation of the melting ratio and 
utmost temperature of the substances. In order to examine the impact of 
frequency and pulse duration, the other predictors, namely welding 
speed, current, and nozzle distance, remain unchanged. As illustrated in 
Figs. 17 and 18, the outcomes pertaining to the laser beam welding 
process of S.S 420/S.S 304 and B 303/S.S 304 are presented 
correspondingly. 

7. Conclusions 

This research examines the impact of laser welding factors on tem-
perature, velocity field, and dimensions in light of the growing demand 
from industries to conjoin dissimilar alloys. The investigation is con-
ducted utilizing numerical modeling and an ANN model. This study 
developed a comparison for prediction of melt pool geometry and 
temperature near the melt pool between numerical simulation results 
and ANN. The final ANN according to optimization algorithm was 
selected to model laser welding responses. To ensure precise laser 
welding modeling, the thermophysical properties are defined as a 
function of temperature, and a combination of 2 various heat fluxes are 
employed. The ensuing findings are outlined below.  

• Owing to the distinct materials laser beam welding of two sheets, the 
temperature field exhibits asymmetry, whereby stainless steel 304 
undergoes higher temperatures than stainless steel 420, owing to its 
lower thermal conductivity coefficient.  

• The shear stress induced by the surface tension gradient at the 
molten pool’s surface and buoyancy force induces liquid metal flow. 

• Reducing the pulse duration from 12 to 8 ms results in an approxi-
mate 298 ◦C increase in the temperature of the molten zone.  

• By extending the frequency, the depth of penetration of the molten 
material into the workpiece is enhanced.  

• The optimized ANN regression plot exhibited a robust association 
between the anticipated and desired values, signifying the model’s 
exceptional skill in prognosticating outputs.  

• The optimized artificial neural network (ANN) error distribution 
revealed that the model’s predictions exhibit an acceptable error 
level. Most errors were concentrated within the zero bins, indicating 
a lack of notable biases or outliers in the predictions.  

• Comparison of both model optimized domain of process parameters 
implies that optimized welding condition of S.S 304/bohler 303 steel 
has had wider range of temperature selection to meet the higher 
welding melt ratio. 

For the future work, we aim to couple new numerical simulation 
methods results by ANN and optimization algorithm to predict the un-
known dissimilar laser welding result before welding test. 
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