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ABSTRACT

According to the high cost and time-consuming nature of laser welding experiments, repetition of one experiment in a wide range of data is
not feasible; so, achieving unexperimented data can be interesting. Hence, the high precision predictability of artificial neural networks
(ANN) seems useful. ANN is an intelligent approach to solve different problems. In this study, the experimental data belonging to the
pulsed laser welding of two Ti6Al4V sheets, one of them with 1 mm thickness and the other with 1, 1.5, and 3 mm thicknesses, were used
to predict the dimensions of the heat-affected zone (HAZ) and the maximum temperature. Moreover, 12 learning methods of a backpropa-
gation network was utilized to select the best one. The Levenberg-Marquardt method had the best performance by considering the mean
square error. According to the ANN results, when the laser focus is at the vicinity of workpiece’s surface, the maximum temperature and
HAZ width are achieved. It should be also mentioned that increasing thickness and welding speed results in decreasing width of HAZ. By
comparing the ANN and experimental results, the maximum relative error for the temperature and HAZ width was obtained equal to
8.62% and 8.22%, respectively. Therefore, ANN can be employed as a tool to develop experimental results and predict indeterminate values
in unexperimented ranges with very high precision. Furthermore, in order to optimize the parameters of laser welding, the multiobjective
genetic algorithm was used to reduce the HAZ width. The genetic algorithm specified that the HAZ width can be reduced to 0.24 mm by
increasing the velocity and thickness.

Key words: laser welding, artificial neural network (ANN), genetic algorithm (GA), Ti6Al4V alloy, heat affected zone (HAZ), different
thicknesses
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I. INTRODUCTION evaluated by weld bead geometry, mechanical characteristics,
distortion, and HAZ. Due to low density, appropriate mechanical

Laser discovery has been led to a massive evolution in newfan- ¥ - : ; g
properties at high temperatures, and good corrosion resistance, tita-

sled industries. In laser welding, high energy density laser beam is
& B:l% B} i nium and titanium alloys have had a successful performance in a

wide range of applications including medical, aerospace, and auto-
mobile and petrochemical industries.” Besides, titanium alloys can

absorbed on the metal surface and causes melt formation. Laser

welding is extensively utilized to join different pieces to each other

because of its speed, quality, high aspect ratio, and small
heat-affected zone (HAZ). The prediction and determination of
molten pool dimensions, HAZ, and the temperature field have a key
role in mechanical characteristics and joint quality in both pulsed

and continuous laser welding applications. Weld quality is mostly

be considered as a suitable substitution for aluminum when the
working temperature exceeds 130 oc,

Given that localized heating together with rapid cooling in laser
welding result in creating residual stresses in the workpiece main
structure and weld zone, hence, the existence of them can lead to
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making harmful effects like corrosion cracks, hydrogen crack, and
fatigue resistance drop. In order to reduce the aforementioned
harmful effects, it is required to investigate the parameters-affected
temperature field and HAZ dimensions. Wide-ranging experimental
studies have been carried out in the field of laser welding. For
instance, Berretta ef al” investigated the effect of changing the posi-
tion of the laser beam on some weld properties like weld geometry,
penetration depth, and sensitivity to crack as well as mechanical
properties such as tensile strength and microhardness. They used a
3000W peak power Nd:YAG laser welding to join 420 and 304
stainless steel samples having 0.8 mm thickness and 50 mm length.
Their variable parameter was the displacement of the laser beam in
the range of (.1-0.2 mm with respect to the interface of the two base
metals. Cao and Jahazi' performed the joint of two sheets of
TieAl4V alloy using Nd:YAG laser welding. They scrutinized the
effect of welding speed on the microstructure and mechanical prop-
erties of workpieces. The acquired weld zone mainly included o mar-
tensite phase which resulted in a 20% increase in hardness compared
to the base metal. It should be also mentioned that the heat-affected
zone included a combination of two @ martensite and @ primary
phases. Furthermore, Taban et al ' performed extensive investiga-
tions on the corrosion, toughness, fatigue, strength, and microhard-
ness of corrosion-resistant steel having 12% chromium. They
concluded that increasing grain size in HAZ leads to a sensible
decrease in microhardness. In addition, Aleksander  welded 2 mm
thickness Ti6Al4V sheets in the butt weld configuration using disk
laser technology and argon shielding gas and studied the effect of
laser parameters on weld quality. Their measurement criteria for the
weld quality were bending and tensile tests and microhardness.
Torkamany et al.”~ also examined the joint of two dissimilar metals,
ie, Ti6Al4V and niobium (Nb), by means of a 1.5kW peak power
Nd:YAG laser. According to the different properties of these two
metals, especially melting temperature, specific heat capacity, and
heat transfer coefficient, the created molten pool was 12 times bigger
in Ti6Al4V compared to niobium. By locating the laser beam on the
titanium piece relative to the joint position, it was observed that
kevhole and conduction mode welding create in titanium and
niobium, respectively. Moreover, Caiazzo et al.’ investigated the
optimization of welding parameters using the experimental results of
Ti6 Al4V laser welding. Welding speed, laser power, and focal posi-
tion were considered as input parameters. They realized changing
the focal position has an impressive effect on the HAZ width and
fusion zone width. Campanelli ef al.’ " analyzed the tensile strength
and microhardness of the molten pool and HAZ in a 2mm thick
Ti6Al4V sheet using fiber laser welding. Their results indicated that
the molten pool and HAZ become cone-shaped through increasing
welding speed. Moreover, the tensile strength of the welded work-
piece was about 80% of the base metal. Ahn ef al.' studied the effect
of laser power, welding speed, and focal position on the molten pool
shape and mechanical properties of the Ti6AMV sheet during the
process of fiber laser welding. Palanivel et al. also analyzed the
microstructure and mechanical properties of a 60 mm diameter
Ti6 Al4V tube using Nd:YAG laser welding. It was observed that the
molten zone hardness is higher in comparison with the base metal.
Al et al. investigated how to move the molten metal and form a
kevhole in 5.5 316L by a numerical and experimental study. They
scrutinized the features of keyhole and behavior of melt movement
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during high power and penetration fiber laser welding. Additionally,
they found that the biggest factor leading to melt movement and
keeping the keyhole width open is the metal vapor-induced pressure.
It is worthy to note that the surface tension force extremely tends to
diminish the width of the keyhole. Kumar and Sinha = studied the
mechanical properties and the microstructure of Ti6GAI4V sheet in
the pulsed Nd:YAG laser welding and reported the effect of heat
input on the dimensions of the molten pool and HAZ. It was
observed that the microhardness of the melt zone is more than that
of the heat-affected zone because of o martensite phase. They also
found that the tensile strength increases to the heat input of
49.98 J/mm and then decreases. Raja Kumar et al.’ investigated the
melt zone and vapor created in two dissimilar metals of pure tita-
nium and Aluminum A5754 during the process of Nd:YAG laser
welding. They examined the effect of changing the distance of weld
line from the joint position of two workpieces on the created molten
pool and vapor. The results for the mode in which the weld line was
located in the joint position were an indication of making an unsta-
ble keyhole in the aluminum sample. Moreover, it was realized when
the weld line is located in the titanium sample, a stable keyhole is
made and the vapor temperature is obtained in the range of 5000-
6000 K. Benyounis ef al”" performed wide investigations in the laser
welding process optimization. They utilized a CO; laser to join
medium carbon steel and adjusted several parameters like laser
power, speed, and focal position in order to achieve optimal condi-
tions. The output values including heat input, penetration depth, and
molten pool and HAZ width were considered. Moreover, they tried
to reduce the costs through the correct regulation of aforementioned
parameters using defining an expenditure function.

Since empirical experiments to investigate the effect of differ-
ent parameters on the weld geometry and the melt zone are time-
consuming and very expensive, using artificial neural network
(ANN), which has been at the center of interest in recent years, is a
suitable alternative for the experiments to predict the parameters of
laser welding. Chang et al”! predicted the weld geometry of 304
stainless steel in the pulsed Nd:YAG laser welding through three
approaches of empirical, finite element, and ANN. Pulse energy,
pulse duration, and sheet thickness were considered as the variable
parameters in the numerical simulation and experimental
approach. The thickness of the metal sheet and the distance
between two sheets were chosen as the input variables of the back-
propagation algorithm in ANN, while the dimensions of weld
geometry were considered as its out variable. The results showed
that using the finite element method to anticipate weld dimensions
in the laser welding of two sheets with a specified gap may be
limited. On the other hand, a good estimation of weld geometry
can be acquired using ANN. Similarly, Anawa and Olabi studied
the laser welding of auvstenitic and ferritic dissimilar steels. They
designed and optimized experiments using the Taguchi method
and concluded that increasing laser power and welding speed leads
to heightening and diminishing tensile strength, respectively. Park
and Rhee  examined the effect of laser welding parameters (power,
welding speed, and the feeding rate of filler wire) on the joint alu-
minum alloy. The experiments showed that the tensile strength of
the weld in a specific condition is higher than the base metal. By
considering weldability and efficiency, an appropriateness perfor-
mance was executed to upEin‘lize the process parameters. The
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genetic algorithm was employed to optimize laser power, welding
speed, and the feeding rate of filler. Furthermore, they obtained the
optimal value of input parameters in terms of weldability and effi-
ciency. Besides, Sathiya et al. utilized ANN to anticipate several
parameters such as penetration depth, bead width, and tensile
strength under the effect of laser welding input parameters includ-
ing focal position, power, and laser head movement speed in the
welding of austenitic stainless steel AISI 904L. In order to achieve
optimal weld geometry having high tensile strength, they also used
the genetic algorithm to study the effect of three different shielding
gases (Ar, He, and N,). The output results of optimal parameters
obtained from the genetic algorithm were in a good agreement
with the experimental ones. Additionally, Ismail et 2l predicted
weld geometry under the influence of different parameters in the
304 stainless steel laser welding using ANN, They utilized the back-
propagation algorithm to achieve the weld parameters; also, the
Levenberg-Marquardt method was employed to train the network.
The accuracy of the ANN model was investigated by comparing the
output and experimental data. Akbari et al.” also used ANN to
anticipate weld geometry and maximum temperature in the laser
welding of the TiSAl4V sheet. In order to exactly predict the
parameters of laser welding, two feedforward networks having 11
and 14 neurons were utilized. The proposed ANN models with
mean square errors (MSEs) of 0,079 and 0.063 resulted in the
precise prediction of weld parameters. Moreover, Bagchi ef al”’
used the Taguchi method and ANN to optimize and predict the
pulsed Nd:YAG laser welding parameters of the Hastelloy C-276
sheet. They found that the maximum depth-to-width ratio is
obtained at the welding speed of 450 mm/min, pulse energy of 10 ],
and frequency of 20 Hz. Kannan et al.” used the Nd:YAG laser to
weld a 1 mm thick NiTinel sheet. They employed four ANN learn-
ing algorithms consisting of batch backpropagation, quick propaga-
tion, incremental backpropagation, and Legvenberg-Marquardt
backpropagation to prognosticate hardness, corrosion, and weld
geometry. In addition, the parameters of shielding gas nozzle dis-
tance from the weld line, laser head movement speed, focal posi-
tion, and power were considered as the input parameters of ANN.
Based on the mean square error, they realized that the Legvenberg-
Marquardt model is the best learning algorithm. A genetic algo-
rithm was considered to optimize the welding parameters as well.
Furthermore, Sivagurumanikandan et al”™” predicted and optimized
several parameters including welding speed, focal position, fre-
quency, and laser power of Nd:YAG in the joint of steel superalloy.
They used the response surface method and artificial neural
network (ANN) to anticipate and optimize the aforementioned
parameters. The results showed that the maximum tensile strength
is obtained at the welding speed of 136 mm/min, focal position of
0 mm, frequency of 13 Hz, and power of 550 W. Mehrpouya ef al."
also prognosticated the thermal behavior initiated from the laser
welding process of NiTi alloys. Therefore, a numerical method was

TABLE I. Chemical composition of TiGAM V alloy (Ref. 22).
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employed to estimate the optimal parameters of laser welding. The
results of the finite element model comparing to the experimental
ones, which include transient temperature, HAZ dimensions, and
fusion zones, showed a good accuracy. Moreover, ANN was
employed as a tool for making a relation between the inputs and
outputs of the welding process in order to find the optimal parame-
ters of the laser. Eventually, they reported decreasing fusion zones
and increasing weld quality. In order to optimize the laser welding
process, Liu et al.’' used the lé-group Taguchi approach together
with the artificial neural network and the genetic algorithm to
acquire the optimal parameters of laser beam welding concerning
316L austenitic stainless steel. The x-ray results were considered as
a foundation to evaluate the porosity and quality of the weld.

In the current research, the results of experimental work
conducted by Li ef al.~ who experimentally and numerically inves-
tigated the pulsed laser welding of two different thickness sheets of
Ti6Al4V were utilized. Under the influence of various laser param-
eters like focal position, laser welding speed, and power, they ana-
lyzed the temperature distribution around the molten pool and also
the depth and width of the molten pool and HAZ dimensions. The
main goal of this research work is to predict HAZ dimensions and
maximum temperature at a 2 mm distance from the weld line using
ANN in the case of unexperimented data in the research conducted
by Li et al.”" Moreover, in addition to predict the effect of input
parameters like welding speed, nozzle distance, and thickness on
the HAZ dimensions and temperature, the genetic algorithm was
employed to achieve the optimal parameters in order to decrease
the heat affected zone.

Il. EXPERIMENTAL PROCEDURE

Li ef al.'”” used the Nd:YAG pulsed laser (IQL-20) in order
to join two 60 x 15 mm” Ti6Al4V sheets, one of which has differ-
ent thicknesses including 1, 1.5, and 3 mm and the other has a
constant thickness of 1 mm. Argon gas was utilized to prevent the
oxidation of the molten pool. The flow rate of shielding gas was
equal to 15 fmin. Table I
TieAl4V alloy,

According to that the melting temperature of titanium is

shows the chemical composition of the

1650 °C and the temperature range of considered thermocouple is
from 40 to 1230°C, hence, the temperature was measured at a
2 mm distance from the weld line. It should be mentioned that two
welded pieces have different thicknesses and thermal fields. To
increase the precision, two thermocouples were installed on each
metallic piece to register the temperature changes. The considered
thermocouple is a flexible K-type thermocouple having 10cm
length, 1 mm tip diameter, and +1% accuracy. - Figure | shows a
schematic of the location of thermocouples and sheet joint,

Li et al. obtained the temperature values using Advantech
USE 4718 module. Olympus SZ-X16 stereoscopy microscope was

Ti% Al% V% Cu% Mn% Fe% Cr% Mo% Si% Sn% Zr Nhb%
Base 6.5 4.0 <0.02 0.02 0.04 <0.01 «0.03 0.03 <0.05 0.02 0.02
J. Laser Appl. 33, 012056 (2021); doi: 10.2351/7.0000356 33, 012056-3
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Laser welding head

Shield gas

Thermocouples

FIG. 1. A schematic of the position of thermocouples and piece dimensions.

also employed to measure molten pool dimensions and HAZ
width. Some of the experimental results obtained from Ref. 32 and
other data were gained through additional experiments performed
by author’s group that is presented in Table 1. The results shown

TABLE II. Experimental results.

ARTICLE scitation.org/journalijla

in Table 1T indicate concerning HAZ width and maximum mea-
sured temperature in the piece having various thicknesses based on
27 different input parameters with 180 W power, 6 ms pulse width,
and 20 Hz frequency. The focal point is the distance between the
laser beam focus point and the surface of the workpiece. The beam
diameter at the focal point is determined by a special paper target
by adjusting the distance from the bottom of the nozzle. Therefore,
the smallest pierce at determined height can present the focal point
position. By measuring the specific distance from the bottom of the
nozzle height, the focal point is determined, and by adjusting the
nozzle distance, the position of the focal point changes.

Il. ARTIFICIAL NEURAL NETWORK

ANN is one of the mathematical modeling methods which is
capable to achieve logical functions and make a relation between
any series of related or unrelated data using the calculation and
analysis speed of computer. ANN is extensively utilized in the field
of prediction and modeling of various processes and has a great
capability to analyze sophisticated multidimensional problems. In
the current study, a backpropagation network, which is belonging
to the category of feedforward networks, was used to predict the
created maximum temperature and HAZ width in a different thick-
nesses sheet. The way it works is that the input data are processed
in advance and the processing path does not return to the neurons

Experiment No. Welding speed (mmy/s) Thickness (mm)

MNozzle distance (mm)

Max. temperature (°C) HAZ width (mm)

Published under license by Laser Institute of America

1 2 1 2 231.2 0.65
2 2 1 3 280.1 0.86
3 2 1 4 216.7 0.62
4 2 1.5 2 187.01 0.58
5 2 1.5 3 2243 0.79
6 2 1.5 4 177.77 0.56
7 2 3 2 74.38 0.52
8 2 3 3 132.1 0.57
9 2 3 4 99.88 0.5

10 4.3 1 2 112.06 0.57
11 4.3 1 3 147.18 0.75
12 4.3 1 4 105.2 0.54
13 4.3 1.5 2 99.48 0.54
14 4.3 1.5 3 137.4 0.7

15 4.3 1.5 4 83.62 0.51
16 4.3 3 2 6l.9 0.4

17 4.3 3 3 118.7 0.42
18 4.3 3 4 76.5 0.37
19 6.2 1 2 823 0.48
20 6.2 1 3 98.24 0.59
21 6.2 1 4 76.7 0.44
22 6.2 1.5 2 68.9 0.42
23 6.2 1.5 3 83.1 0.48
24 6.2 1.5 4 61.35 0.37
25 6.2 3 2 493 0.27
26 6.2 3 3 70.1 0.31
27 6.2 3 4 5%.2 0.24

J. Laser Appl. 33, 012056 (2021); doi: 10.2351/7.00003586 33, 012056-4
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FIG. 2. The architecture of artificial neural netwark (ANM).

of the previous layer, and the output of each layer will only influ-
ence the next one. The learning process in ANN is such a way that
this network can improve its behavior in order to achieve a specific
goal just by observing its own performance in each epoch.
Improvement in learning over time should be evaluated and estab-
lished upon a criterion. Here, criterion means closing to the goal.
In the current model, a multilayer feedforward network in which
the first and second layers were considered as the input (hidden)
layer having the desired number of neurons and the output one,
respectively, was utilized. Figure 2 illustrates the architecture of the
network in which the transfer functions of “tansig” and “pure line”
were used in the hidden and last layer in that order.

According to Fig. 2, three parameters of welding speed, nozzle
distance, and thickness were considered as the inputs of ANN.
Moreover, temperature and HAZ width are the outputs of the
network in a different thicknesses piece. In this study, the laser
nozzle distance was considered the distance between the laser beam
output to the workpiece surface. Hence, the 3 mm nozzle distance
means locating the focus on the piece surface. Figure 3 displays an
outlook of the nozzle distance.

According to Table I11, 12 different algorithms were consid-
ered to train ANN. The MSE was employed to investigate and test

laser

nozzle
distance

FIG. 3. An outlook of the nozzle distance.

the validation of different training methods. Equation (1) shows
how to obtain the MSE,

Target-Output)’
MSE=Z( Argpbli o ; (1)
n

where “Target” denotes real outputs, “Output” is the output
resulted from the network, and “n” is the number of data.

The comparison of different types of training methods is
shown in Fig. 4. It is worthy to note that the training performance
of various algorithms was compared based on MSE. Every single
training algorithm was compared to each other in 50 iterations
with 9 neurons in the hidden layer. The minimum error is pre-
sented in different trainings.

In Fig. 4, it is shown that the Levenberg-Marquardt algorithm
was chosen to train ANN because of quick convergence and small
MSE. The backpropagation algorithms change network weights
and bias values in such a way that the performance function
declines more quickly. In the Levenberg-Marquardt, similar to
semi-Newton methods, it is tried to reduce the volume of calcula-
tions by means of not calculating the Hessian matrix. When the

TABLE Ill. Used training algorithms and their abbreviation.

Abbreviation Algorithm
Im Levenberg-Marquardt backpropagation
058 One-step secant backpropagation
scg Scaled conjugate gradient backpropagation
bfg BFGS quasi-Newton backpropagation
cgp Conjugate gradient backpropagation with
Polak-Ribiére updates
cgb Conjugate gradient backpropagation with
Powell-Beale restarts
cgf Conjugate gradient backpropagation with
Fletcher-Reeves updates
p Resilient backpropagation
gdx Gradient descent with momentum and adaptive
learning rate backpropagation
gd Gradient descent backpropagation
gdm Gradient descent with momentum backpropagation
pda Gradient descent with adaptive learning rate

backpropagation

J. Laser Appl. 33, 012056 (2021); doi: 10.2351/7.0000356
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FIG. 4. The comparison of different types of artificial neural network fraining methods for temperature and HAZ widih.

performance function is in the form of sum-of-squares (508), the
Hessian matrix is calculated as follows:

H=T]. (2)

Furthermore, the gradient is obtained from the following
equation:

g=1"e (3)

where | is the Jacobian matrix that includes first derivatives of
network errors with respect to weights and bias and e is the vector
of error networks, The Jacobian matrix is calculable through stand-
ard techniques, and the complexity of its calculations is very lower
than the Hessian matrix. The Levenberg-Marquardt algorithm uses

Temperature

4.0E-3
3.5E-3
3.0E-3
2.56-3
2.0E-3
1.5E-3
1.0E-3
5.0E-4
0.0E+0

MSE

5.

9 11 13 15 17 19 21 23 25 27 29

Number of neuron in hidden layer

Eq. (4} approximation to calculate the Hessian matrix,

Xipr = Xi — [T+ p1] e (4)

When the numerical value of g is equal to zero, this function
is converted to the Newton method to approximate the Hessian
matrix. While Eq. (1) can be converted to the gradient descent
method when g is large. Therefore, » decreases after each successful
step.” !
neurons available in the hidden layer in the Levenberg-Marquardt
algorithm. As can be seen, the minimum MSE for HAZ width and
temperature at 30 iterations is related to the network with 11 and 8

Figure 5 indicates a comparison about the number of

neurons in the hidden layer, respectively.

In ANN modeling, the used data are divided into two categories.
One of these categories named training data is involved in the
network training procedure and the other named test and validation
data is employed to study the training performance of the network.

HAZ Width
1400
1200
1000
800
600
400
200

0 — T T T— T
5 7 9 11 13 15 17 19 21 23 25 27 29

Number of neuron in hidden layer

MSE

FIG. 5. The comparison of the neuron number in the hidden layer based on minimum MSE for temperature and HAZ width.
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After the training procedure, the test data are applied to the network
so that it does not experience them during the procedure.

Figure 6 shows the training performance in each epoch for the
data related to the training, test, and validation based on MSE.
According to Fig. 6, the minimum MSEs for the validation data
concerning temperature and HAZ width were obtained in epoch 8
and 6, respectively. The acquired MSEs for the temperature and
HAZ width are equal to 16.5078 and 0.000 103 8, respectively.

The regression graphs of temperature and HAZ width are
illustrated in Figs. 7 and 8, correspondingly. As can be seen, the
horizontal axis is the goal data and the perpendicular one is the
ANN outputs. The best scenario occurs when the output is equal
to the target, i.e, the output data from ANN and the real ones are
coincident. The phrases “Fit” and R indicate the best passing line
from the data and the ANN performance, respectively. According
to the indicated regression graphs, 19 data (ie, 70%) for the
network training and 8 one for the validation and test (ie, 30%)
were considered. As shown in Fig. 7{a), it can be realized that the
Levenberg-Marquardt algorithm  shows high performance in
the training stage and is precisely equal to the goal data. In com-
parison with Figs. 7(a) and 7(b), Fig. 7(c) indicates the maximum
temperature difference in the validation data obtained from ANN.
Figure 7(d} illustrates the comparison of the entire goal data with
the outputs resulted from the network. Figure 8 also shows the per-
formance of the Levenberg-Marquardt algorithm related to the
HAZ width data training. Based on Figs. #(a) and 2(b), the
network in the allocated validation and training data has a better
performance compared to Fig. 8(c).

Figure 9 indicates the difference between the goal data and the
outputs resulted from the trained network. As can be seen, the
ANN results have acceptable precision, and the model outputs and
targets are almost identical. This indicates that the output value is
close to the target, ie, the network has been well trained.

da Best Validation Performance is 79.9037 at epoch 8
.

10?
S = Train
2 Vallgation
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R Bast
g
wl 10-10 L
=
e
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According to Figs. 9(a) and 9(b), the maximum difference of the
target and output data in temperature and HAZ width are equal to
10.93 and 0.029, respectively. The low error values designate the
very good power of network generalization to estimate the values of
temperature and HAZ width which are not included in the
network training set. Based on these values, it can be predicted that
the network is capable to employ with a very low error in order to
estimate the aforementioned values.

Figure 10 shows the relative error values of the trained data
with respect to the target data based on Eq. (5). According to this
figure, the maximum relative errors regarding temperature and
HAZ width are equal to 8.62% and 8.22%, respectively. Hence, it
can be found that the ANN output data have a little difference with
the target one.

In addition, using Eq. (6], the value of R® error is caleulated
for the Levenberg-Marquardt method to evaluate the quality of the
trained network. The obtained values of R error for temperature
and HAZ width are 0.9962 and 0.9912, respectively, which indicate
a small difference in the obtained data from the trained network
compared to the experimental results. Hence, due to the low
obtained error, it can be concluded that the network can be gener-
alized to untrained data,

Relative error = u = 100, (5)
¥
o M (6)
-9

In Eq. (6}, i is the experimental data used for ANN training,
¥i is the data extracted from the trained network, and y is the mean
value of the experimental data.

Best Validation Performance is 0.00016719 at epoch 6
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FIG. 6. The Levenberg-Marguardt training performance: (a) Temperature and (b) HAZ width.
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IV. OPTIMIZATION

its complexity. The optimization procedure is shown in Fig. ||

Optimization is a tool that allows users in research and indus- using the genetic algorithm. The genetic algorithm consists of three
trial projects to find the appropriate conditions to get the answers main parts of selection, crossover, and mutation. According to
they want. Today, this is increasingly utilized in welding owing to Fig. 11, the genetic algorithm begins with a primary set of random
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answers. Each individual of this set represents a response for the
problem and evolves in each generation. All through each genera-
tion, chromosomes are evaluated by measuring the value of fitness.
In order to form the next generation, two operators of crossover
and mutation are used.
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Table 1V presents the considered parameters for optimization

using the genetic algorithm. Based on Table I, the number of
input and output variables is three and two in that order.
The primary population for optimization is considered 40. In the
genetic algorithm, it is necessary to create a set of possible solutions
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FIG. 9. Error histogram: (a) Maximum temperature and (b) HAZ width.

as the initial population as the first step. The mentioned set of solu-
tions is selected randomly. How to crossover the parents of
primary population is in the form of intermediate. As is shown in
Eq. (7}, a crossover along with the consideration of the average
weight of the parents leads to the creation of children. Weights are
determined by a single parameter (ratio} that is the scale of the
number of variables. Crossover fraction determines the fraction of
the next generation, which is produced by combination operation,
and its value is equal to a fraction between zero and one. In the
present study, the value of the crossover fraction is considered

a Temperature
@
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equal to 0.8. The mutation is an operation in which one or more
genes in a selected chromosomal strand change from zero to one or
vice versa crealing mutant generation. In general, the mutation
operator leads to the entrance of new information to the population
and searching for intact spaces in the problem. The feasible adapt
mutation is used in the present study, which results in a large
increase in the population and thus an increase in algorithm effi-
ciency in multiobjective optimization. The migration fraction is a cri-
terion from zero to one which specifies a fraction of people in each
subgroup migrating to different subgroups. The cessation provision
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FIG. 10. The relative error for the input values: (a) Temperature and (b) HAZ width.
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FIG. 11. The optimization procedure using the genetic algorithm (Ref. 35).

of generation production was considered, given the maximum time
elapsed without improving the evolution,

child = parent 1 + r and* Ratio*(parent 2 — parent 1). (7)

V. RESULTS AND DISCUSSION

Figures 12 and 13 indicate the ANN results for the
temperature and HAZ width at 3 mm nozzle distance. As shown in
Fig. 12, the thickness variations at low speeds have an impressive
effect on temperature. It should be mentioned that in a constant
speed, the lower thickness piece experiences higher temperature.
This indicates that a thin piece acts as a small heat sink. The points
identified by **" indicate the data resulted from the experimental
work.

As shown in Fig 13, increasing welding speed causes declining
energy absorption; so, this results in decreasing amount of melt
and HAZ. Generally, HAZ can be decreased by increasing thickness
and welding speed. Hence, it can be realized that welding speed
and thickness have an incredible effect on microstructure, weld
quality, and molten pool dimensions.

TABLE IV. Genetic algorithm parameters.

Parameter Value
Inlet 3
Output 2
Population size 40
Generations 42
Crossover fraction 0.8

Crossover intermediate
Mutation adapt feasible
Migration fraction 0.2

Crossover Fen
Mutation Fen

In Fig. 14, the impression of the focal position change on
HAZ width has been demonstrated in a constant welding speed of
3 mm/(s. The power density alternates through the laser focus dis-
placement. Therefore, identifying the optimal focus position signifi-
cantly contributes to forming an excellent weld. The results of
Fig. 14 represent that thickness reduction significantly increases the
HAZ width dependence on the focal position. Furthermore, it was
observed that at a specified thickness and 4 mm nozzle distance,
where the laser focus is 1 mm below the workpiece surface, and the
minimum HAZ width is obtained.

Figure 15 shows the variations of HAZ width at 1.5 mm thick-
ness. It is observed that by locating the nozzle distance at the

Nozzle distance=3 (mm)

Max. Temperature (* C)

1.5
Thickness (mm)

Welding speed {(mm/s)

FIG. 12. The changes of maximum temperature in terms of thickness and
welding speed at 3 mm nozzle distance.
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vicinity of the workpiece surface, the HAZ width increases due to

increasing the temperature and melting workpiece surface. In order

to improve the weld quality and reduce the HAZ width, one can
increase the welding speed.

It is worthy to mention that the heat-affected zone leads to
making residual stresses in the main structure of the workpiece and
the weld zone. These stresses can result in harmful effects like the
corrosion cracks and fatigue resistance reduction of the workpiece.
Although heightening temperature increases the volume of melt,
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FIG. 14. The changes of HAZ width in terms of nozzle distance and thickness
at 3 mm/s welding speed.
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there will be a wider HAZ, Therefore, reducing the HAZ width can
be important. The result of solution is just a response in single-
objective optimization, but in the two-objective oplimization, it is
in the form of a set of responses known as pareto front. The set of
pareto responses is the optimal response from the response space
neither of which is better than the other. This being better is based
on the criteria that are defined in the target functions and the con-
straints of multiobjective optimization problem. Figure 16 is an indi-
cation of ANN optimized output parameters including maximum
temperature and HAZ. The optimized parameters for the welding
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FIG. 16. The optimized output parameters of temperature and HAZ width.
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TABLE V. Optimal input and output values.

Welding speed (mm/s) Thickness (mm) MNozzle distance (mm) Max. temperature {*C) HAZ width (mm)

6,185 710095
2042 206 291
2.209 782 042
5.774 845 896
2.034 926 664
4.716 162 229
2.134 782 359
5989 374 81

4.909 030 618
2.284 926 664
2.729 B68 695
2.191 832 849
2042 206 291
2032311333

2812 170 046
1.759 227 398
2.094 858 068
2.238 001 652
1.016 873 974
2.735 592 135
1.829 820172
2.672 185 587
2462 362 466
1.016 873 974
2481097 297
1.838 105 354
1.759 227 398
2,026 401 319

3.988 997 061
2.880 670 148
3.107 970 298
3.508 186 649
2.634 938 299
3.844 930 447
3.124 545218
3.551 362972
3069118112
2.134 938 299
3.483 318 355
3.116 314 531
2.880 670 148
2.948 589015

56.959 30581
1952153032
1538156589
68.731 607 77
260.805 4756

78.207 300 52
178.762 664 4
61.207 798 25
108358 676
2347122812
1191259462
174.769 407 9
1952153032
1686880948

0.240 884 09

0.678 426 124
0.499 658 858
0310049 191
0.850 788 546
0.333 137 775
0.612 461 967
0.266 658 703
0386012 138
0.737 443 162
0.429 883 B36
0.608 352 353
0.678 426 124
0.549 376 349

speed, laser nozzle distance, and thickness were obtained in the inter-
val of 2-6.2 mmy/s, 2-4 mm, and 1-3 mm in that order.

Fable V' presents the input parameters including welding
speed, nozzle distance, and thickness to achieve the optimal
outputs. According to Table V, the minimum HAZ width is
obtained by increasing the laser welding speed and the nozzle dis-
tance of laser penetration to the piece. Besides, at low thicknesses,
the HAZ width can be substantially decreased by increasing the
nozzle distance.

VI. CONCLUSION

In this study, an artificial neural network was used to predict
the dimensions of HAZ and maximum temperature. Moreover,
using the genetic algorithm, the parameters of optimal speed,
nozzle distance, and thickness were obtained to reduce the HAZ
width. The results of current research work are as follows:

+ The results obtained in this study show the high capability of
ANN in the estimation of laser welding parameters. The
maximum relative error of ANN output data and real one for the
HAYZ width and maximum temperature were obtained to be
8.22% and 8.62%, respectively, which indicates the closeness of
the predicted values to the experimental data.

+ In this study, 12 ANN training algorithms were compared to
each other and the Levenberg-Marquardt algorithm was chosen
as the best one based on the mean square error. Furthermore,
the lowest error for the HAZ width and temperature was related
to the network with 11 and 8 neurons in the hidden layer,
respectively. On the other hand, increasing the number of
neurons does not necessarﬂy result in improving training
performance.

« The results demonstrated that for the identical conditions, the
thickness reduction of the segment considerably increases the
HAZ width. In contrast, the thicker plate underwent a higher
temperature gradient in comparison to the thinner plate.

+ The multiobjective genetic algorithm was employed in order to
optimize the input parameters to achieve higher temperature and

lower HAZ width. The optimization results showed that the HAZ
width decreases by increasing the welding speed and thickness.
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