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Abstract: In this paper, we present a novel epileptic seizure detection algorithm based on analysis of 
electroencephalogram (EEG) and electrocardiogram (ECG) signals to detect seizure onsets that are not 
associated with rhythmic EEG activity. In this algorithm, spectral and spatial features are extracted 
from seizure and non-seizure EEG signals by Gabor functions and combined with four extracted 
features of ECG signals to form feature vector. Then a probabilistic neural network (PNN) classifier is 
used to determine an optimal nonlinear decision boundary. This proposed algorithm can automatically 
detect the presence of seizures which can be important advance facilitating timely medical intervention. 
Our algorithm is evaluated on 12 records of physionet database. The obtained results indicate that the 
proposed algorithm can recognize 98.25% of seizures with a false detection rate of 12.47%.  
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INTRODUCTION 
 

 Epilepsy is a chronic disorder of central nervous system that predisposes individuals to experiencing 
recurrent seizures (A.J. Casson et al., 2007). A seizure is a sudden, transient aberration in the brain's electrical 
activity that produces disruptive symptoms. These symptoms range between a lapse in attention, a sensory 
hallucination, or a whole-body convulsion (N. Verma et al., 2010). In new therapeutic systems, a local electrical 
stimulator such as Vagus Nerve Stimulator (VNS) is used to halts the progression of a seizure prior to the 
development of clinical symptoms (C.M. DeGiorgio et al., 2006). In this system, brain activities (EEG signals) 
of patient are recorded and monitoring by portable (Chung-Ping Young et al., 2011) or wearable (A. Casson et 
al., 2010) devices. When the onset of a seizure is recognized, the magnetic field is generated by implanted 
electromagnet triggers to initiate on-demand stimulation of the vagus nerve prior to the development of 
debilitating symptoms. 
 There are different algorithms to detect the seizure onset based on analysis of EEG signals such as Gotman 
(J. Gotman, 1990), Celka (P. Celka and P. Colditz, 2002) and (P. Colditz, 2010). These algorithms can be 
patient non-specific (A. Yazdani et al., 2009) or patient-specific (W.A. Chaovalitwongse et al., 2011), but since 
the cerebral origin, spread of seizures and the spectral content of rhythmic activities vary across individuals, so 
the patient-specific algorithms have a better performance (W.A. Shouyi Wang and S. Wong, 2010). To design a 
seizure detector, the features are extracted from the seizure and non-seizure EEG signals of patient and are 
classified at two classes. For example, Shoeb establish a patient-specific seizure onset detection algorithm (A.H. 
Shoeb, 2009). It extracts the eight features from 0-25HZ frequency band by means of a 3 HZ bandwidth filter 
and a support vector machine (SVM) classifier is used to classify the feature vectors. But the latency was large 
for some patients that can be arisen from large similarity of seizure and non-seizure signals. This issue can be 
solved by a suitable classifier that set an accurate curve of decision boundary. 
  In some patients, once the entrained neural mass is large enough, rhythmic activity reflective of neuronal 
hyper synchrony becomes manifest within the scalp EEG. Detecting seizures of this kind using the scalp EEG is 
challenging since the EEG changes observed following seizure onset are also seen routinely during non-seizure 
states. In order to detect those types of seizures a detector requires information beyond that within the scalp 
EEG to ascertain whether or not a seizure is taking place. The additional information can be derived using a 
second physiologic signal whose dynamics are influenced by the seizure. The second physiologic signal and the 
scalp EEG will complement each other and improve seizure onset detection. For example, seizures resulting in 
repetitive motor activity may become readily detectable if scalp EEG data is supplemented with accelerometer 
sensor data (B.R. Greene, 2006). For other types of seizures, especially those originating within or spreading to 
the temporal lobes, seizures are associated with ECG changes. The most common ECG change associated with 
seizures is heart rate acceleration (tachycardia) (H. Khamis et al., 2009). 
 To design a seizure onset detector based on analysis of EEG and ECG signals, the features are extracted 
from the seizure and non-seizure EEG signals of patient and combined with the extracted features from ECG 
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signals, simultaneously. The spectral and spatial features can be obtained from spectrum energy of each EEG 
channel. Also, the mean heart rate and the instantaneous heart rate can be extracted from ECG signals. For 
example, Barry present a seizure onset detection algorithm based on EEG and ECG signals (B.R. Greene et al., 
2006). It extracts the six features (dominant spectral peak, power ratio, bandwidth of dominant spectral peak, 
nonlinear energy, spectral entropy and line length) from EEG signals and six features (mean R-R interval, std. 
dev. R-R intervals, mean R-R interval spectral entropy, mean change in the R-R interval, interval coefficient of 
variation, interval power spectral density) from ECG signals. The R-R interval is defined as the time in seconds 
between adjacent R-wave maximum points that described by (D. Benitez et al., 2001). It could recognize 617 of 
633 expert-labelled seizures with a false detection rate of 13.18%.  
 In this paper, we propose a seizure onset detection algorithm based on analysis of EEG-ECG signals. In this 
algorithm, seizure and non-seizure EEG signals is decomposed by Gabor functions and spectral and spatial 
features are extracted from them. To reduce the computational cast of the Gabor function, we introduce three 
simplified Gabor function representations. Each representation is obtained by filtering the EEG-ECG signals 
with a certain sum of Gabor functions. The three EEG-ECG representations are: the sum over directions of 
Gabor function (GaborD), the sum over scales of Gabor function (GaborS), the sum over scales and direction of 
Gabor of function (GaborSD). We also extract the four features from ECG signals, synchrony. Furthermore, we 
develop a probabilistic neural network (PNN) classifier as a fast training classifier that have six advantages 
relative to other classifiers such as back propagation and SVM: 1) training samples can be added or removed 
without extensive retraining, 2) guaranteed to converge to an optimal classifier as the size of the representative 
training set increases (Bayes' optimal decision surface), 3) an inherently parallel structure (making parallel 
implementation a natural progression), 4) estimate the probability density function for each class based on the 
training samples. 5) Relatively simple implementation, 6) robustness to noise and self-learning ability.  
 The rest of the paper is organized as follows. The proposed seizure onset algorithm including the feature 
extraction and classification are presented in section II. In section III, the performance of algorithm is obtained 
based on six measures (accuracy, sensitivity, specificity, latency, false detection rate and good detection rate) 
and the best results compared with other algorithms. Finally, some conclusion is discussed in section IV.  

 
 

 
 
Fig. 1: Outline of the proposed seizure detection algorithm. 
 
 

The Proposed Seizure Onset Detection Algorithm: 
 Block diagram of the proposed seizure onset detection algorithm is shown in Fig.1. In this algorithm, firstly, 
L-second epochs from seizure and non-seizure EEG signals are decomposed by Gabor functions and represented 
in the spatial, spectral and temporal domain. Secondly, five features such as the number of zero coefficients, the 
smallest and largest coefficients, the mean and standard deviation of coefficients are extracted from each sub-
representation. Synchronously, four features such as the mean heart rate, instantaneous heart rate, power ratio 
and spectral entropy are extracted from L-second ECG epochs. Finally, a probabilistic neural network classifier 
is employed to train on the extracted features from seizure and non-seizure EEG-ECG signals of each patient for 
determination of optimal nonlinear decision boundary. 

 
Feature Extraction: 
 Gabor noted that communication theory was based on two distinct methods of signal analysis: one method 
describes the signal as a function of time, the other in terms of its frequency content (S. Challa et al., 2007). 
Gabor's theory considered a new representation for the processing of information which could take account of 
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both the time and frequency domains (K. Okajima, 1998). The time-domain representation defines the amplitude 
of a signal at each instant in time, while the frequency-domain representation uses infinitely-long pure sinusoids, 
defined only by their frequency, amplitude and phase. A Gabor function is defined as: 
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 where is the constant of the Gaussian modulating probability function and is inversely proportional to the 

width of the function, ot  defines the centre of the Gaussian function. f is the frequency of the oscillation,  is 

the phase of the harmonic oscillation (relative to the center of the Gussian modulating function. In our 

application, we use Gabor functions with two different scales ( ot = 0,1) and four different orientations 

( 4/d   for d = 0,1,2,3) and f = 2. 

 If wcX , be the L-second epoch at channel c and time w, the Gabor function representation is obtained by 

convolving the Gabor function with wcX , . The result is a 3th order tensor in 321 ,, NNNR which give the spatial, 

spectral and temporal domain. Although this method for representation is powerful, its computational costs both 
for recognition and calculation for representation are high. We use three representations of the wcX , . These are 

the sum over directions of Gabor functions based representation (GaborD), the sum over scales of Gabor 
functionsbased representation (GaborS) and the sum over scales and directions of Gabor functions based 
representation (GaborSD) (Karlheinz Gröchenig, 2011). The most important benefit of these new representation 
is that the cost of computing them is low. GaborD is the magnitude part of the output generated by convolving 
an wcX , with the sum of Gabor functions over the four directions with the fixed scale as: 
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 GaborD(c, f, t) is the output of the GaborDmethod for representation. Therefor, we have four different 
outputs to represent the wcX , in GaborD decompsition. GaborS is the magnitude part of the outputs generated by 

convolving an wcX , with the sum of Gabor functions over the two scales with the fixed direction as: 

 

 
 

Fig. 2: The process of feature extraction. 
 

 
oo t

wc
t

wc tgXtgXtfcGaborS )(*)(*),,( ,,
           (3) 

 
 GaborS(c, f, t) is the output of the GaborS method for representation. Therefore, we have six different 
outputs to represent the original wcX , in the GaborS decomposition. GaborSD is the magnitude part of the 

output generated by convolving an wcX , with the sum of all eight Gabor functions as: 
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 Therefor, 14 represent is calculated by GaborD, GaborS and GaborSD for each EEG epoch channel. We 
extracted five features such as the number of zero coefficients, the smallest and largest coefficients, the mean 
and standard deviation of coefficients from each sub-representation form L-second EEG epochs. So feature 
vector containing M = 14×N×5 features from N channels. We also extract four features such as the mean heart 
rate, instantaneous heart rate, power ratio and spectral entropy from L-second ECG epochs, synchronously. 
Fig.2 shows the process of feature extraction and forming of the feature vector. 

 
Classification Using PNN: 
 In this paper a probabilistic neural network (PNN) (M. Kh. Hazrati and A. Erfanian, 2010) classifier is used 
to classify the selected features from seizure and non-seizure EEG and ECG signals. The PNN is introduced by 
Specht (D.F. Specht, 1991) and are characterized by fast training and convergence to Bayes-optimal decision 
surface. It estimates Parzen or a similar probability density function for each class based on the training samples 
that is capable of realizing or approximating the Bayes classifier as: 
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 where dRx  is a d-dimensional feature vector, c(x) denotes the estimated class of pattern x. pj is the prior 
probability of class j, and the conditional probability density function of class j is fj. The goal of the PNN is to 
estimate the values of fj by equation (6). 
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 where }, ii Y{XX  is the set of n observations, each d
ii xX   is a feature vector, and iY  is a label 

indicating the class of pattern iX . The sequence nK  is Parzen kernel which is defined as: 
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 where K is an appropriately selected function and nh  is a certain sequence of numbers. The function K can 

be presented as: 
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 Then, sequence is expressed by means equation (9). 
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 The prior probabilities pj are estimated as: 
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 where jn is the number of observation from class j. we get the following discriminant function estimate by 

combining equation (5), (6) and (10). 
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Fig. 3:  PNN structure. D: number of features. Q: number of training samples, K: number of classes (K=2). The 
three layers are input layer, radial basis layer and competitive layer.  

  
 In this paper, we use a feed forward networks built with three layers. This network structure is shown in 
Fig.3. The input layer is fully connected to the hidden layer. Feature vectors are normalized and are used as 
inputs of this network. The hidden layer has a node for each classification. Each hidden node calculates the dot 
product of the input vector with a test vector subtracts 1 from it and divides the result by the standard deviation 
squared. Three nodes in output are represented by unit vector seizure = [1 0], non-seizure = [0 1].  
 
Exprerimental Results: 
 In this section, we evaluate the performance of our seizure onset detector algorithm. First, the used dataset 
is introduced. Then, the evaluation measures are introduced. Finally, the results of algorithm are compared with 
other algorithms. 
 

 
Fig. 4: example of a multi-channel electrographic seizure. Seizure begins at 56 seconds. 
 
EEG and ECG Dataset: 
 A dataset of 12 records from 10 term neonates containing 633 labeled seizure events, with mean seizure 
duration of 4.60 min, were recorded and analyzed. The records had a mean duration of 12.84 h. Each record 
contained 7-12 channels of EEG and one channel of simultaneously acquired ECG. Ten records, sampled at 256 
Hz, were made in the neonatal intensive care units of the Unified Maternity Hospitals in Cork, Ireland, using the 
Viasys NicOne video-EEG system. The remaining recording, sampled at 200 Hz, was recorded at Kings College 
Hospital, London, on a Tele factor Beehive video-EEG system. A total of 154.1 h of EEG and ECG were 
analyzed. Table 1 shows the number of seizure events per record, the duration of each record and the mean 
seizure duration for each record. Further information about this data is available in (EEG and ECG Database). 
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Fig. 4 shows an example of an electrographic seizure. The seizure, which begins at 56 seconds, involves a 12 
second period of low-amplitude EEG activity across most EEG channels. At the same time, the patient’s heart 
rate accelerates. Later, at 68 seconds, 1-2 HZ generalized rhythmic activity develops. 

 
Evaluation Measures: 
 We evaluated the performance of our detector based on five measures: 
 
Accuracy: The classification accuracy is defined as the percentage of epochs correctly classified by detector. 

 
Sensitivity: The sensitivity is defined as the percentage of seizure epochs (as labelled by an expert in neonatal 
EEG and ECG) correctly identified as seizure epochs by detector. 
 Specificity: The specificity is defined as the percentage of labelled non-seizure epochs correctly classified 

as non-seizure by detector. 
 Latency: the delay between the expert-marked seizure onsets within the EEG detector declaration of 

seizure activity. 
 FDR: The false detection rate is defined as the percentage of non-seizure epochs incorrectly identified as 

seizure epochs is equivalent to 100-specificity (%). 
 GDR: The seizure sensitivity or good detection rate (GDR) is defined as the percentage of electrographic 

seizure events as labelled by an expert in neonatal EEG and ECG correctly identified by the detector. 
 

Table 1: Database characteristics for each record: Number of seizure events, duration of recording, mean seizure duration. 
Record No. of seizure events Record duration (h) Mean seizure duration (min) 

1 90 10.01 2.77 
2 22 10.42 7.33 
3 21 24.53 5.41 
4 60 14.25 1.56 
5 35 14.40 10.02 
6 29 10.01 2.15 
7 155 24.04 5.28 
8 56 13.17 1.99 
9 60 5.20 1.05 
10 41 5.69 1.16 
11 50 17.33 4.88 
12 14 5.05 11.64 

 Total  633 Total  154.10 Mean 4.60 

 
Seizure Detection Results: 
 The proposed algorithm is an epoch-based detector so it makes intuitive sense to quantify its performance in 
term of accuracy measure. From a clinical viewpoint, the most important measure of the clinical utility of a 
seizure prediction algorithm is the percentage of seizure events correctly detections, because it increases the 
capability of detector to recognize the seizure in order to initiate the just in time therapy methods. We use the 
MATLAB to implement our algorithm. The used data in the experiments is labelled as seizure or non-seizure. 
 To evaluate the utility of the combining EEG and ECG information, we compare the performance of two 
detectors. One detector classifies a synthesized feature vector using EEG and ECG, the other classifies a 
synthesized feature vector using EEG features. Both detector are trained on 20 seconds following the onset of 
the electro decrement with training seizures, and both detectors process L = 2 second epochs. When the detector 
uses the ECG-EEG information, the mean GDR was found to be 98.25% with an FDR of 12.47%. The 
classification had a mean classification accuracy of 86.31% with the associated sensitivity and specificity of 
79.66% and 87.79%, respectively. When the detector use only EEG information, the mean GDR, FDR and 
accuracy have been reduced while, the specificity has been increased. The result illustrates that the ECG is 
suitable in its own right for use in seizure detection algorithms. The combination of two signals supplies the 
neonatal seizure detection algorithm with a broader seizure-specific information base, offering potentially 
superior seizure detection performance. Table 2 shows the obtained result by our detector which is comparison 
with Barry's algorithm (B.R. Greene et al., 2006). Our detector exhibits a shorter FDR, a higher sensitivity and 
accuracy and a comparable specificity relative to Barry's algorithm. The high sensitivity increase the capability 
of detector to recognize the seizures in order to initiate the just in time therapy methods.  
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 Our detector could detect the 54% of 633 seizures within 3.7 seconds delay. Fig. 5 illustrates the effect of 
increasing of the training seizures samples on the mean latency. When a training seizure sample is used, the 
detector will obtain latency greater than 8 seconds for test seizures. The detector obtains latency close to 4 and 3 
seconds for three and four training seizures, respectively. So the detector performance is improved as more 
seizure EEG signals are included in the training dataset. 
 
Table 2: Results of the proposed algorithm in comparison with Barry's algorithm. 

 Our algorithm Barry's algorithm (B.R. Greene et al., 2006) 
EEG EEG-ECG EEG EEG-ECG 

Accuracy (%) 84.57 86.31 84.55 84.66 
Sensitivity (%) 73.41 79.66 71.02 74.08 
Specificity (%) 88.37 87.81 88.53 86.82 
FDR (%) 11.15 12.47 11.47 13.18 
GDR (%) 94.38 98.25 93.64 97.52 

 

 
 
Fig. 5: Increasing the number of the training seizures decreases the detection delay. 

 
Conclusion: 
 We presented an algorithm for seizure detection which uses the extracted information from physiologic 
EEG and ECG signals. In this algorithm, seizure and non-seizure EEG signals are decomposed by Gabor 
functions (GaborS, GaborD, GaborSD) and are represented in spectral, spatial and temporal domain. Then, five 
features are obtained from each representation. Furthermore, four features based on heart rate acceleration are 
extracted from ECG signals, synchronously. Finally a PNN classifier is used to determine an optimal nonlinear 
decision boundary. The used PNN classifier has an inherently parallel structure and prevents the premature 
convergence which can increase the sensitivity of seizure onset detector. The algorithm was evaluated using a 
large data-set containing ECG and multi-channel EEG. The obtained result showed when ECG and EEG signals 
simultaneously was used for seizure detection, the sensitivity and specificity was better relative to when only 
EEG signals was used. Average accuracy rate of 86.31% obtained when EEG and ECG signals were 
synchronously used.  
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