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Abstract. A numerical model is presented for free vibration of a thin square isotropic
plate containing a crack located at the center of the plate. The procedure used is singular
finite element method through MATLAB software. In this regard, an eigenvalue analysis
is performed to obtain the natural frequencies of the cracked plate by considering different
boundary conditions. The first two modal shapes are formed for different ratios of crack
length to plate width. The results are validated by comparing with those in other articles.

1 Introduction

Plate as a basic structural element is widely at risk of cracking, so analysis of cracked
plates has been the subject of intensive investigations during recent decades. In fact, the
presence of a crack in a plate causes changes in stiffness of the plate and affecting its
static and dynamic characteristics. One of these characteristics is natural frequency that
is analyzed in this study. Natural frequency of plates has already been analyzed by various
methods, such as decomposition method [1], Ritz method [2] or generalized Rayleigh-Ritz
method [3], Galerkin’s method [4], finite element method [5-10] or generalized differential
quadrature finite element method [11], extended finite element method [12], and also
extended cell-based smoothed discrete shear gap method [13].

As known in theory of fracture mechanics, the stresses at the crack tips reach to infinity
so that a phenomenon known as singularity occurs. This phenomenon is usually resulted
in increasing of computing time of finite element analysis due to need to small mesh sizes
around the crack tips. Thus, it is desirable to use a method to overcome this problem.
This paper uses singular finite element method to frequency analysis of plates.

2 Singular finite elements

Singular elements are particular elements used around the crack tip to present the singu-
larity of the crack. In fact, the exclusivity of them is their compatibility with singularity
behavior. Owing to the fact that out-of-plane analysis of a cracked plate is affected by
the in-plane stress distribution, to get more accurate results, an in-plane analysis should
be first done. The singular element used for in-plane analysis has five nodes with two
degrees of freedom at each node (u,v) shown in Fig. 1. More details of this element can
be found in ref. [14].
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Figure 1: In-plane five-node singular triangular element [14]

The out-of-plane singular element used here has three nodes with three degrees of free-
dom at each node; including a transverse displacement and two rotations. The geometric
of this element is contemporary shown in a Cartesian and polar coordinate system in Fig.
2. The transverse displacement, w, can be expressed in polar system as follow [15]:

Z

crack tip

Figure 2: Out-of-plane three-node Singular triangular element [15]

. PR 1.0
w(r,d) = a4+ agrcosd+ azrsing + ayr2 COS§+0457°2 smé—i—

2

and in the matrix form displays as below:

1 0 a0 . .
T2 [0053 3 + sin® —} + 712 cos 0sin O + agr? cos? 0 + agr? sin? 6

w=1[¢][a].
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The relation between parameters o and nodal degrees of freedom is expressed as:

where [C] is the corresponding transformation matrix. The well-known form of transverse
displacement in finite element method is as:

w=[N]- W],

where [N] are the element shape functions can be derived based on interpolation functions
as following:

3 Finite element formulations

Free vibration of plates can be modeled mathematically by algebraic equations based on
Energy theory as following:

nm=u-T,
where U is the total potential energy derived by:
U=U,+U,

Uy is the strain energy due to bending and Uy is the effect of in-plane forces on the
transverse deflection.

Et?
U, = /m [wQM + 2W 47 W gy + wi,y +2(1 - V)wi,y] dA

Ug — / [szw?z + QNXYU/,XUJ,X + Nyyw,zy] dA

and T is the kinetic energy obtained by:

B ptw?
2

In above equations w is the transverse displacement and comma indicates partial differ-
entiation with respect to the next subscribed variable, w is the natural frequency, ¢ is the
plate thickness, p is the density of the plate material, F is the Young’s modulus and v is
the Poisson’s ratio. N,,, Ny, and Nxy are in-plane stress resultants.

Based on principle of minimum total energy (411 = 0), the eigen-equations of free
vibration of the plate are obtained as below:

(Ks + Kg) — AM][W] = 0.

T w? dA.

Then, the dimensionless natural frequency \ is expressed as:

i
A=wl 2
““\ND

where L is the plate width.
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4 Model descriptions

The MATLAB software is utilized for the modeling and vibration analysis of the con-
sidered cracked plate in this study. The geometric of the cracked plate is shown in Fig.
3.
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Figure 3: Specimen geometry

Two sides of the plate parallel to the crack line have in-plane restrictions subjected
to uniform pressure. So two in-plane and out of plane models are coded for it. In both
models, the crack was presumed to be through thickness since thin plate is used and having
no friction else and no propagation was allowed. Three types of boundary conditions are
considered for it, once has four simply supported sides (SSSS), other has two simply
supports in its opposite sides and two clamped supports in its other sides (CSCS) and
the last has four clamped sides (CCCC). The considered geometric parameters are: plate
height and width 2H = 2L = 1.2m, plate’s thickness ¢ = 0.01 m, and relative crack’s
length # = 0.0, 0.2, 0.4, 0.6, 0.8.

The plate material is supposed to be linear elastic and isotropic with Young’s modulus
as: E =204 GN/m?, Poisson's ratio v = 0.3 and density p = 7860 kg/m?>.

In both in-plane and out of plane models, two kinds of singular and regular elements
are used in this way, 8 singular triangular elements are located around each crack tip and a
number of regular quadrature elements depend on the mesh sizes are used in other parts of
plate. Regular elements have four nodes and the singular elements as previously explained
have five nodes through in-plane and three nodes through out of plane models. Different
mesh sizes are also used to get the sufficient convergence. The assembling samples of two
models elements are shown in Figs. 4-5.
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5 Numerical results

Figure 4: Assembling sample of in-
plane model elements
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Figure 5: Assembling sample of out
of plane model elements

In this section, natural frequencies are obtained for a square plate (aspect ratio=1). The
results are comparing with other researchers studies just found for simply supported
plate, [1, 16, 12, 13]. Table 1 shows the two lowest modes of non-dimensional frequency
parameter A compared to those in other articles. The results of the current analysis show
good agreement.

It is important to observe how the frequency parameter changes with different crack
lengths and types of supports. Consequently, diagrams 1, 2, 3 indicate the values of the
first two non-dimensional frequency parameter A versus different relative crack lengths ¢
for three types of supports.
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Diagrams 1, 2, 3: changes of two first modes of non-dimensional frequency parameter A
versus different relative crack lengths for three types of supports

The mode shapes of obtained frequencies are also plotted in Fig. 6.
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Aspect ratio=1
Supports | Crack ration Articles Mode 1 | Mode 2
Liew et al. [1] 19.740 | 49.350
0.0 Bachene et al.[12] 19.739 | 49.348
' T. Nguyen-Thoi et al. [13] | 19.730 | 49.404
Present study 19.730 | 49.323
Liew et al. [1] 19.380 | 49.160
0.9 Bachene et al.[12] 19.305 | 49.181
' Huang et al.[16] 19.330 | 49.190
Present study 19.266 | 49.169
Liew et al. [1] 18.440 | 46.440
Bachene et al.[12] 18.278 | 46.635
8555 04 Huang et al.[16] 18.290 | 46.650
Present study 18.261 | 46.709
Liew et al. [1] 17.330 | 37.750
0.6 Bachene et al.[12] 17.180 | 37.987
' Huang et al.[16] 17.190 | 37.990
Present study 17.183 | 38.168
Liew et al. [1] 16.470 | 27.430
0.8 Bachene et al.[12] 16.406 | 27.753
' Huang et al.[16] 16.410 | 27.770
Present study 16.416 | 27.917
0.0 Present study 28.937 | 54.699
0.2 Present study 28.087 | 54.609
CSCS 0.4 Present study 26.284 | 54.057
0.6 Present study 24.469 | 48.302
0.8 Present study 23.247 | 34.963
0.0 Present study 35.962 | 73.331
0.2 Present study 34.989 | 72.929
ccce 0.4 Present study 33.168 | 66.430
0.6 Present study 31.717 | 49.331
0.8 Present study 31.145 | 36.226

Table 1: The first two modes of non-dimensional frequency parameter A for different
relative crack lengths ¢ = 0.0, 0.2, 0.4, 0.6, 0.8 and three types of supports (simple,
simple-clamped, clamped)

6 Conclusions

In the present paper, a numerical model based on singular finite element method (SFEM)
has been developed for natural frequency of central cracked, square plates. In this proce-
dure, the obtained eigen-equations have been implemented based on principle of minimum
total energy 611 = 0, using MATLAB software and the effects of the crack length and
different types of supports on the natural frequencies and the corresponding mode shapes
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Figure 6: Mode shapes of non-dimensional frequency parameter A for different relative
crack lengths and three types of supports

have been investigated. On the basis of the achieved results the following conclusions can
be stated:

1. The numerical simulations show that the frequency decreases as the crack length
increases. This is due to the reduction in stiffness of the material structure.

2. The change in frequencies due to the presence of a crack is a function of the crack
parameters and it also depends upon the mode shapes of the plate.

3. Existence of clamped supports causes higher increment of frequency in comparing
with simple supports. The increase in stiffness is the cause for increase in frequency
when the boundary condition is changed from SS to CS or CC.

The present results are in very good agreement with the numerical results reported
in the literature so it can be concluded that the SFEM is an efficient method for the
vibration analysis of cracked plates.
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