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Abstract— This paper focuses on implementing the unified 

power flow controller (UPFC) in the optimal power flow 
approach, a critical aspect of power and control system 
operations. Optimal power flow minimizes operating costs and 
maintains safety margins for control variables, making it an 
indispensable tool for energy management. The flexible AC 
transmission system (FACTS) is a fundamental component of 
this approach, with the UPFC playing a crucial role. This 
versatile device provides various types of energy system 
compensation, enabling the independent control of reactive and 
active electrical power in transmission lines and bus voltages 
simultaneously. Previous studies have explored a wide range of 
engineering applications for UPFC using diverse techniques. This 
paper reviews these applications, specifically examining how 
UPFC can increase power system flexibility and controllability. 
Additionally, this paper explores utilizing artificial intelligence 
(AI) in the placement of UPFC in power systems. By 
incorporating AI techniques such as machine learning and 
optimization algorithms, power system operators can optimize 
the placement of UPFC to achieve optimal energy management. 
This approach enhances the efficiency and reliability of energy 
systems, resulting in significant cost savings and improved power 
system performance. 

Keywords—Power Flow Controller, power flow, transmission 
system, big data, soft computing, mathematics, mathematical 
modeling, artificial intelligence, energy consumption, voltage 
source converter. 

I.  INTRODUCTION 
The expansion of the industrial sector, coupled with the rise 

in energy consumption and the need to maintain dynamic 
stability, while ensuring acceptable voltage levels, has resulted 
in power transmission constraints in the power system [1,2]. To 
increase the transfer capacity of modern power systems, 
transmission lines must be built, leading to higher operating 
costs for these energy systems. Compensators are used to 
improve the status of existing lines and supply the network 
with the necessary load [3,4]. High-voltage flexible AC 
transmission systems are essential for maintaining appropriate 
voltage levels and quality. Without proper evaluation and 
accumulation of Flexible AC Transmission Systems (FACTS), 
the complex power system may be unable to regulate voltage 
or adjust the level of electrical power injected into or absorbed 
by the power system. The utilization of FACTS leads to an 

overall improvement in grid capacity and performance [5]. 
Moreover, FACTS devices play a critical role in enhancing the 
efficiency and reliability of large-scale energy systems. They 
provide a greater degree of control over electrical energy, 
enabling the damping of power oscillations. As a result, these 
devices are instrumental in achieving the flexibility of the 
power system [6]. A considerable amount of research has been 
conducted in the field of FACTS devices [7], and they are now 
a crucial part of interconnected large-scale electrical networks 
[8]. FACTS devices are classified into three main categories, as 
illustrated in Fig. 1 [9]. The first category comprises 
mechanical switches such as thyristor-controlled series 
compensator (TCSC) [10]. The second category includes 
hybrid devices such as static synchronous compensator 
(STATCOM) [11], and the third category includes voltage 
source converters such as interline power flow controller 
(IPFC) [12]. By utilizing these FACTS devices, power system 
operators can efficiently manage power flow and maintain a 
reliable, stable, and flexible power system. 

 
Fig. 1. Classification of FACTS devices 

 
To address the need for reactive power compensation on 

high-voltage transmission grids, an electrical device called a 
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Unified Power Flow Controller (UPFC) is utilized [13]. What 
makes UPFCs unique is their reliance on the protection and 
control power system, setting them apart from traditional AC 
transmission technology [14]. Additionally, they are highly 
adaptable to accommodate the specific requirements of various 
functionalities, further enhancing their usefulness. In the power 
system, UPFCs serve different purposes in improving grid 
behavior, such as security enhancement [15], backup protection 
[16] and oscillation damping [17]. Due to their numerous 
advantageous characteristics, UPFCs have been extensively 
researched for their application in the power system [18,19]. As 
a member of the FACTS family, UPFCs are connected using a 
combination of shunt and series connections, making them 
more flexible in their usage. The aim of this research is to 
provide a comprehensive review of the various applications of 
UPFCs in the modern power system. The categorized 
information presented in Table I summarizes the operating 
fundamentals of the FACTS device family, including the 
various possible main control approaches and the local signals 
utilized for supplementary damping control [20,21]. This 
concise summary of published research on UPFCs serves as a 
valuable resource for practitioners and researchers in the field. 
In conclusion, UPFCs have become an essential component in 
addressing reactive power compensation in high-voltage 
transmission grids. Their unique characteristics and 
adaptability to specific functionalities have made them valuable 
assets in improving grid behavior.  

This paper is structured as follows: Section II of this paper 
provides a thorough introduction to the principles of unified 
power flow controllers (UPFC), including their capabilities and 
limitations. Section III then presents a summary of the 
coordination design of UPFC and power system stabilizers 
(PSS), highlighting the key considerations that need to be 
considered to ensure optimal performance. Moving on to 
Section IV, this section briefly reviews the current state of 
research on the application of artificial intelligence (AI) in 
UPFC optimal placement studies. Specifically, the focus is on 
how AI can be used to identify the best locations for UPFC 
installations to mitigate congestion and other related issues. In 
Section V, this paper categorizes other flexible AC 
transmission systems (FACTS) devices that are used to address 
power system challenges, such as sub synchronous resonance 
(SSR) and congestion. Eventually, this paper is concluded in 
Section VII. 

II. UNIFIED POWER FLOW CONTROLLER 

A. Compensating Structure 
As illustrated in Fig. 2, the UPFC is a combination of a 

static synchronous series compensator (SSSC) and a 
STATCOM that are paired using a prevalent DC voltage 
source [22]. The UPFC employs a series transformer to inject 
current into a power transmission line, using a pair of 
controllable three-phase bridges. This advanced control system 
allows for the precise management of both reactive and active 
power flows in the transmission system, providing a balanced 
sine wave source is applied. One of the key advantages of the 
UPFC is its ability to independently control the reactive and 
active power flows on the power line, as well as the bus 
voltages, thanks to the inverters that operate via a universal DC 
link and a DC storage capacitor. However, it's worth noting 
that internal reactive power interaction via a DC link between 

two inverters is not possible. The SSSC component of the 
UPFC is primarily used to regulate the capacity for the transfer 
of electrical energy in the line to which it is connected, while 
the STATCOM is typically employed to regulate the bus 
voltage at locations where typical connections are found [23].  

 
Fig. 2. Orbital structure of unified power flow controller 

There are three distinct categories of techniques for 
controlling the active and reactive power flow: (i) is designed 
to inject the series voltage in phase shift with the power 
transmission line current, allowing it to function similarly to a 
variable sense capacitor [24], (ii) is according to injecting the 
series voltage in phase shift with the UPFC bus [25], and (iii) 
the D-Q axis current in the power transferring line is 
independently controlled, enabling individual control of the 
reactive and active power flow [26]. 

TABLE I.  Overview of FACTS controller 
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BTBL 
reactive source and 

phase 
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bus voltage 
active power flow 

B. Compensation Model 
The UPFC operates by injecting voltage in series or in 

shunt with the transmission line. This results in the ability to 
control both the magnitude and phase angle of the voltage at 
the point of injection. By controlling these parameters, the 
UPFC can adjust the flow of power through the transmission 
line in real-time. This makes it a valuable tool for managing 
power transmission networks, particularly in situations where 
the network is under stress or there are variations in demand. 
The ability to adjust node voltages, line impedances, and phase 
angle using the UPFC allows for greater flexibility in 
managing power transmission systems. Additionally, the UPFC 
can provide voltage support, improve system stability, and 
mitigate the impact of disturbances on the power network [27]. 
Since UPFC is a multi-variable power controller in a large-
scale energy system, it is essential to investigate the impact of 
the various power system operating conditions. Fig. 3 
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illustrates the UPFC model with a regulated voltage source. 
With the electric grid serving as a representation of the shunt 
and series voltage source inverters, this model is comprised of 
two power supplies, one of which is associated with series and 
the other in shunt. By transforming DC voltage to AC voltage, 
the power sources are established. The schematic 
representation of a UPFC with a controlled flow supplier can 
be found in Fig. 4 [28]. Fig. 5 depicts the model of the UPFC 
as a transformer with a shunt branch. In this model, the variable 
shunt susceptance and the turn ratio of the transformer are 
unaffected by the voltages and currents that are measured at the 
input and output of UPFC [29]. A dynamic model of UPFC 
was developed in [30], to boost the power transfer capability 
through the power transmission network. Series and shunt 
controllers were structured with fuzzy logic controllers in this 
approach. In [31], a comparative study on different techniques 
used to incorporate UPFC in load flow algorithms, such as the 
decoupled technique, load injection technique, matrix 
partitioning technique, and indirect technique, is presented. In 
[32], a reconfigurable cascaded multi-level inverter with a full-
bridge converter is suggested. Each phase foot shunt has one 
end linked to the electrical power line and the other ends linked 
in parallel to the primary terminals of the series line transmitter 
and the alternating current (AC) inverter's output terminals. 

 
Fig. 3. Equivalent compensation circuit with controlled voltage source 

 
Fig. 4. Equivalent compensation circuit with controlled flow source 

 
Fig. 5. UPFC Model as a transformer with a shunt branch 

III. COORDINATION DESIGN OF UPFC AND PSS 
Various techniques have been used for the coordinated 

design of Power System Stabilizers (PSS) and UPFC 
controllers. Some of the commonly used techniques include: (i) 
Classical control design: This applies to developing separate 
controllers for PSS and UPFC and then combining them using 
feedback signals. The design is based on linearized models of 
the power system. (ii) Optimal control design: This involves 
formulating an optimization problem that aims to minimize a 
certain cost function while satisfying system constraints. The 
optimal control design can lead to better performance than the 
classical control design. (iii) Robust control design: This 
applies to organizing controllers that can handle uncertainties 
and disturbances in the power system. Robust control design 
can improve system stability and performance under varying 
operating conditions. (iv) adaptive control design: This 
involves developing controllers that can adapt to changes in the 
power system. Adaptive control design can improve system 
performance under changing operating conditions. (v) 
Artificial intelligence (AI) based control design: This concerns 
utilizing machine learning and other AI techniques to design 
controllers for PSS and UPFC. AI-based control design can 
lead to better performance than traditional control design 
methods [33,34]. A strategy for coordinating UPFC with PSS 
to suppress oscillations generated by a small signal disturbance 
is presented in [35]. This procedure is used to determine the 
eigenvalue of the greatest real segment and then minimize it as 
a nonlinear optimization challenge. This model aims to 
suppress oscillations caused by small signal disturbances. In 
[36], genetic algorithms are used in a coordinated configuration 
among a power system stabilizer and a UPFC to optimize the 
damping proportion of electro-mechanical states by correlating 
various characteristics of PSSs with a UPFC. An optimal 
combination for simultaneously locating UPFC and PSS to 
augment the stability of the power system is addressed in [37], 
and a mixed integer nonlinear problem is developed for the 
analysis and design as a result of this presentation research. 
This architecture aims to boost the transient stability of the 
large-scale energy system. 

IV. USE OF ARTIFICIAL INTELLIGENCE IN UPFC PLACEMENT 
Finding the ideal positions and configurations for UPFC 

devices in power systems is very challenging, and a lot of data 
is frequently required. Three categories— conventional 
optimization (CO), sensitivity analysis (SA)-based, and 
Artificial Intelligence (AI)-based—can be used to categorize 
the techniques and approaches used in earlier research studies 
to determine the best locations and settings for the system 
equipped with UPFC. The most widely used techniques are 
those based on artificial intelligence, and these are also 
considered to be the best strategies. Power flow restrictions 
like reactive and active power, voltage, and power loss are all 
impacted by the generator failure. The ideal placement of the 
Facts devices as well as the selection of the appropriate signals 
in the power system are essential to its effective performance 
[38]. The best location for the FACTS controllers is extremely 
important to find the ideal location for UPFC controller 
placement in multiple applications [39]. Due to its ease of 
implementation in solving numerous challenging engineering 
optimization problems, AI is widely used [40]. To prove the 
practicability of the suggested method for choosing where the 
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UPFC interface should be in distribution or transmission 
networks, critical features should be investigated.  

The parameters assessed include the phase angle, voltage 
profile, and proportion of power quality improvement, as well 
as the cost of the UPFC device during setup and operation, the 
cost of power generation, the location, number, and parameter 
of the UPFC device, the deviation of the voltage, the severity 
index, the voltage stability, and the mitigation of harmonics 
[41]. These analyses should be carried out in a specific power 
network, preferably the regular network of the IEEE bus 
system, under specific contingency conditions. The approach 
to UPFC placement based on evolutionary programming and 
various sensitivity analyses is described in [42].  Note that, in 
the field of optimization, this problem was solved utilizing 
evolutionary algorithms. To increase dynamic stability, a 
hybrid strategy based on optimal planning and sizing of UPFC 
using the combination of the Gravitational Search Algorithm 
(GSA) and artificial bee colony (ABC) algorithms is 
developed in [43]. The cuckoo search (CS) and firefly 
algorithm (FA) are suggested in [44], where the FA strategy 
optimizes the maximum power loss line as the suitable 
location of the UPFC, utilizing the best location and the 
UPFC's capacity to boost the multimachine power system's 
transient and dynamic stability. To achieve optimal power 
flow and optimal placement of UPFC, a new gray wolf with a 
population-based update evaluation algorithm is demonstrated 
[45]. Furthermore, there are a number of strong approaches, 
such as [46,47], that can be utilized in the field of planning the 
location of FACTS devices in the modern power system. 

V. CONGESTION MITIGATION AND SSR 
There is an extensive power flow approach for the UPFC 

that is delivered in [48]. This strategy has the capacity to 
manage both reactive and active electrical powers as well as 
the voltage amplitude simultaneously. In [49], eigenvalue 
computation and fast Fourier transform (FFT) investigation 
against operating point deviations and uncertainties in the 
system are also analyzed, along with a suggestion for 
mitigating sub-synchronous resonance (SSR) by employing 
fractional-order PI (FOPI)-based UPFC. A comprehensive 
optimization framework according to sequential interpretation 
to optimally distribute the UPFC and TCSC  with wind power 
generators under deregulated large-scale energy system is 
furnished in [50], in which the suggested strategy for optimal 
planning of UPFC and  TCSC has been experimented with, and 
verified on customized IEEE 14-bus and IEEE 118-bus multi-
machine energy systems. 

VI. IMPROVE POWER OSCILLATION DAMPING 
Low-frequency oscillations are one of the primary 

problems that must be solved to guarantee the reliable 
operation of the power system [51,52]. Power oscillations can 
be triggered by a variety of factors, including faults in the 
transmission lines, power line switching, or a sudden change in 
the output of the generator [53]. Local plant mode oscillations, 
interplant mode oscillations, and inter-area mode oscillations 
are some of the different types of power system oscillations. 
The important advantage of increased energy transmission 
capability over the current interconnector is achieved through 
oscillation dampening. To reduce power system oscillations, 
several investigations have been carried out [54,55]. To 

identify the optimal control input parameters of a unified power 
flow controller (UPFC) for damping power system oscillations, 
a comparative analysis with the direct component of torque 
(DCT), minimum singular value (MSV), Hankel singular value 
(HSV), and residue has been proposed [56]. A damping control 
system, which is based on a generalized power-incorporated 
current controller, is a third-generation FACTS device that is 
presented in [57], to investigate its effect on reducing low-
frequency oscillation. 

VII. CONCLUSIONS 
The implementation of Flexible AC Transmission System 

(FACTS) devices, such as the UPFC, has emerged as a 
promising solution for improving the utilization of existing 
power in modern power systems. UPFC, with its ability to 
control active and reactive power flows, regulate bus voltage 
and current flow, and manage up to three transmission power 
system parameters simultaneously, has attracted significant 
attention in recent years. This paper has highlighted the 
integration of artificial intelligence (AI) techniques into the 
placement of UPFC, which can optimize energy management 
using machine learning and optimization algorithms. The 
proposed method ensures the optimal placement of UPFC, 
leading to enhanced power transfer capabilities and improved 
power quality, resulting in substantial cost savings. The use of 
AI in the placement of UPFC is a novel and exciting approach 
with great potential for the future of energy systems, and its 
scalability makes it a widely applicable solution. Overall, this 
technique can significantly enhance the performance and 
reliability of energy systems, which is crucial in today's world. 
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