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ABSTRACT 

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of 
heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why 
we used meta-heuristic (guided-random-search-based) methods for finding a suboptimal schedule. Due to the large 
solution space that a meta-heuristic algorithm is required to cover, the search generally incurs considerably much higher 
computational cost than the heuristic-based algorithms. Further, meta-heuristic algorithms such as GA typically require 
sufficient sampling of candidate solutions in the search space and have shown robust performance on a variety of 
scheduling problems. For these reasons, in this paper we proposed a task scheduling algorithm on heterogeneous 
computing systems using Efficient State Space Search Genetic Algorithm (ESSSGA). The basic idea of this approach is 
to exploit the advantages of heuristic-based algorithms to reduce space search and the time needed to find good solutions. 
The proposed algorithm uses a novel list scheduling heuristic-based algorithm while using a heuristic-based earliest finish 
time approach to search for a solution for the task-to-processor mapping. The achieved results show that the proposed 
approach significantly surpasses the other approaches in terms of task execution time (makespan). 

Keywords: Genetic algorithms, Task scheduling, Heuristic algorithm, Multiprocessors, State-space search 

1. INTRODUCTION 

The main objective of the task scheduling is to map tasks onto processors and to order their execution so that 
precedence constraints are satisfied and minimum of task execution time (makespan) is achieved. Many task scheduling 
algorithms using a variety of approaches have been proposed. Due to the NP-complete nature of task scheduling [1], the 
efficiency of schedule solutions presented by existing scheduling algorithms cannot be guaranteed and it is considered 
one of the most challenging problems in heterogeneous distributed computing systems. 

Traditional task scheduling has focused on heuristic-based scheduling such as list-based scheduling algorithms. 
In the classical list-based scheduling, such as Heterogeneous Earliest Finish Time (HEFT) [2], a task sequence satisfying 
priority constraints, the priorities are based on computation and communication costs. The purpose of this algorithm is 
typically to schedule all the tasks on a set of available processors in order to minimize makespan without violating 
precedence constraints [3]. 

In spite of the heuristic-based algorithms, the meta-heuristic-based algorithm or guided-random-search-based 
[2], such as GA, includes a method in the search space which is less efficient and produces much higher computational 
cost. For this reason, trade-off between task execution time and speed of convergence is required. Since hybrid algorithm 
achieves better performance than heuristic algorithms [3], we develop a hybrid algorithm by integrating GA with some 
heuristic approaches. In this paper, we described the task scheduling problem and proposed a hybrid task scheduling 
algorithm using Efficient State Space Search Genetic Algorithm (ESSSGA) on heterogeneous computing systems. 

2. PROBLEM DESCRIPTION 

Compile-Time Task scheduling is the problem of assigning the tasks of an application to the processors of 
heterogeneous computing systems. An efficient schedule is a schedule that minimizes the schedule length of the 
application. In task scheduling algorithms, the sequence of task execution and relations is represented by a directed 
acyclic graph (DAG), 𝐺 (𝑇, 𝐸), where 𝑇 is a set of 𝑛 tasks and 𝐸 is a set of 𝑒 edges as shown in Figure 2. An 𝑒𝑑𝑔𝑒 (𝑖, 𝑗)  ∈
𝐸 between task 𝑇𝑖 and task 𝑇𝑗 represents the communication cost between two tasks denoted as 𝐶(𝑇𝑖 , 𝑇𝑗). The 

communication cost is only required when two tasks are assigned to different processors, i.e., the communication cost 
when they are assigned to the same processor will be zero. A task with no predecessors is called an  𝑒𝑛𝑡𝑟𝑦 task, 𝑇𝑒𝑛𝑡𝑟𝑦 

and a task with no successors is called an 𝑒𝑥𝑖𝑡 task, 𝑇𝑒𝑥𝑖𝑡. The weight on a task, 𝑇𝑖, signified as 𝑊(𝑇𝑖), represents the 
computation cost of the task, and the computation cost of a task, 𝑇𝑖 on a processor, 𝑃𝑗 is 𝑊(𝑇𝑖 , 𝑃𝑗) [2]. 

A heterogeneous computing system is represented by a set 𝑃 of 𝑚 processors .The 𝑛 × 𝑚 computation cost 
matrix 𝐶 stores the execution costs of tasks where each 𝑐𝑖,𝑗  ∈  𝐶 represents the execution time of task 𝑇𝑖 on processor 
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𝑃𝑗. The average computation cost of task 𝑇𝑖 on all processors, denoted as 𝑊(𝑇𝑖)̅̅ ̅̅ ̅̅ ̅̅  and 𝐶(𝑇𝑖, 𝑇𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average 

communication cost of the 𝑒𝑑𝑔𝑒(𝑇𝑖 , 𝑇𝑗) [2, 3]. Table 1 provides a list of notations and their definitions used in the paper. 

2.1. Critical path (CP) 
The longest path of a task graph is namely the Critical Path (CP) which is defined as the path from an entry task 

to an exit task that has maximum sum of computation costs of tasks and communication costs of edges [4]. The sum of 
computation costs of the tasks on the CP defines the lower bound of the makespan. Therefore, an efficient list-based 
scheduling algorithm requires suitable scheduling of the tasks located in the CP [5]. 

Table 1 Description of notations 

Notation Description 

T A set of tasks in an application 

E A set of edges for precedence constraints among the tasks 

𝐺 (𝑇, 𝐸) A Directed Acyclic Graph 

P A set of heterogeneous processors 

n Number of tasks 

e  Number of edges 

m Number of processors in a heterogeneous computing system 

𝑇𝑖 The ith task in the application 

𝑒𝑑𝑔𝑒(𝑇𝑖, 𝑇𝑗) The edge from task 𝑇𝑖 to task 𝑇𝑗 

𝑃𝑗 The jth processor in the system 

𝑇𝑒𝑛𝑡𝑟𝑦 The entry task with no predecessor 

𝑇𝑒𝑥𝑖𝑡 The exit task with no successor 

𝑊(𝑇𝑖, 𝑃𝑗) The computational cost of task 𝑇𝑖 on processor 𝑃𝑗 

𝑊(𝑇𝑖) The computational cost of  task  𝑇𝑖 

𝑊(𝑇𝑖)̅̅ ̅̅ ̅̅ ̅̅  The average computational cost of task 𝑇𝑖 

𝐶 The computation cost matrix 

𝑐𝑖,𝑗 The execution time of task  𝑇𝑖 on processor  𝑃𝑗 

𝐶(𝑇𝑖, 𝑇𝑗) The communication cost from subtask 𝑇𝑖 to subtask 𝑇𝑖 

𝐶(𝑇𝑖, 𝑇𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  The average communication cost of the 𝐶(𝑇𝑖, 𝑇𝑗) 

SLR Scheduling length ratio of a task graph 

CP The longest path of a task graph 

𝐶𝑃𝑚𝑖𝑛 The critical path of the unscheduled application based on the computation cost of tasks on the fastest processor  
𝐹𝑇(𝑃𝑖) The finishing time of the scheduled exit node on processor  𝑃𝑖. 

𝑃𝑜𝑝𝑆𝑖𝑧𝑒 The population size 

𝑒𝑙𝑖𝑡𝑖𝑠𝑚 A set of the best chromosomes 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 The chromosome generated by operators 

Pc The probability of crossover 

Pm The probability of mutation 

2.2. Heterogeneity model  
The heterogeneity model of a computing system used in this paper is Task-based Heterogeneity Model (THM). 

In a THM computing system, a processor executes the tasks at the different speed, depending on characteristics of the 
tasks. 

3. RELATED WORK 

Static task scheduling algorithms can be generally classified into two main types: heuristic-based algorithms 
and meta-heuristic algorithms (guided-random-algorithms) [2]. Heuristic-based Task scheduling classified as list-based, 
clustering-based, and duplication-based heuristics (Figure 1) [2, 4, 6]. 

A list-based scheduling preserves a list of all tasks in DAG. Each task is assigned a given priority and the order 
of the list of tasks is created based on these priorities. Two phases are then repeated until all the tasks in the ordered list 
are scheduled: task selection and processor selection. In the first phase, an ordered task sequence using its priority is 
generated and in the second phase, a set of appropriate candidate processors for a task is chosen. It is to be noted that 
any of the priority scheme may be used to serialize the tasks in the DAG. List scheduling algorithms are mostly chosen 
since they generate good quality schedules with less complexity but they are seriously dependent on the effectiveness of 
the heuristics. Hence, they are not likely to produce reliable results for task scheduling. List scheduling algorithms such 
as Modified Critical Path (MCP) [7], Dynamic Critical Path (DCP) [4], Dynamic Level Scheduling (DLS) [8], Levelized Min 
Time (LMT) [9], Mapping Heuristic (MH) [10], Heterogeneous Earliest Finish Time (HEFT) [2], and Critical Path On a 
Processor (CPOP) [2] are popular task scheduling algorithms for heterogeneous system. 

A weakness of the list-based scheduling algorithms is that the performance of these algorithms is seriously 
dependent on the effectiveness of the heuristics [3]. Consequently, they are not probable to generate reasonable results 
for task scheduling. Many list-based scheduling works only if a predefined simplifying assumption is maintained [5]. Some 
assumption can be acceptable in specific cases, but others cannot be gratified in real-world applications. Homogeneous 
processors, unlimited number of processors, and no precedence constraints among tasks, are examples of the simplifying 
assumptions [5]. 
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Figure 1 Classification of static task scheduling algorithms. 

In clustering-based heuristics, a set of tasks that communicate with each other are grouped together to create 
a cluster. If the number of created clusters is greater than the number of available processors, clusters are combined so 
that the number of the remaining clusters equals to the number of processors. Finally, clusters are allocated to the 
available processors, and local execution of the tasks within each processor is determined. The complexity of clustering-
based algorithms tends to be lower than list-based algorithms [2]. The Mobility Directed algorithm (MD) [7], Dominant 
Sequence Clustering (DSC) [11], and Linear Clustering [12] are examples of clustering algorithms.  

The duplication-based scheduling attempts to reduce communication delays by allocating a key task on more 
than one processor. Some examples for this algorithm are Critical Path Fast Duplication [13], Duplication Scheduling 
Heuristic [14], Bottom-up Top-down Duplication Heuristic [15], and Duplication First and Reduction Next [16]. 

A meta-heuristic algorithm generally requires appropriate sampling of candidate solutions in the search space 
and has shown high performance on a diversity of scheduling problems. It is familiar that Ant Colony Optimization (ACO) 
[17, 18], Particle Swarm Optimization (PSO) [19-23], Tabu Search (TS) [24, 25], Simulated Annealing (SA) [26, 27], 
Artificial Bee Colony algorithm (ABC) [28], Cuckoo Search algorithm (CS) [29-31], Evolution Algorithm [32, 33], and 
Genetic Algorithms (GA) [3, 5, 25, 34-42] have been successfully applied to the task scheduling. Genetic algorithms have 
been broadly used to develop solutions for several task scheduling problems.  

On the other hand, scheduling algorithms can be classified into three groups: heuristic-based, meta-heuristic, 
and hybrid algorithms [5, 43]. A hybrid algorithm combines both heuristic-based algorithms and meta-heuristic algorithms. 
Hybrid approach can achieve better performance in terms of makespan for DAG scheduling and reducing the scheduling 
overhead, when compared with the overhead of meta-heuristic algorithms [3]. It even has a better performance than 
heuristic algorithms [3]. The Hybrid Heuristic–Genetic Scheduling (H2GS) [5], and Multiple Priority Queues Genetic 
Algorithm (MPQGA) [3] are examples of this class of algorithms. 

4. THE PROPOSED ALGORITHM 

The Efficient State Space Search Genetic Algorithm (ESSSGA) has two-step scheduling algorithm. In the first 
step, the ESSSGA algorithm runs a list-based heuristic scheduling algorithm to reduce space search and generate a high 
quality task schedule. The solution generated by this step is located in an approximate area in the search space around 
the optimal solution. In the second step, a Genetic Algorithm searches the approximate area to improve the solution 
generated by the first step. 

Algorithm 1. ESSSGA  

Input parameters: 
               Crossover Probability, Mutation Probability, Size of Run, Size of Population, Number of Processors; 
Output: 
               A task schedule. 
1: Call Initial Population Algorithm          //Algorithm 2; 
2: repeat 
3:  Call GA Selection Algorithm     //Algorithm 4;  
4:  Call GA Crossover Algorithm   //Algorithm 5;  
5:       Call GA Mutation Algorithm      //Algorithm 6; 
6:       Call GA Selection Algorithm     //Algorithm 4; 
7:       Call Inversion Algorithm           //Algorithm 7; 
8:       Call GA Crossover Algorithm   //Algorithm 5;  
9: until size of run; 
10: return a near-optimal schedule. 

4.1. The outline of ESSSGA 
In this paper, the ESSSGA algorithm for task scheduling on heterogeneous systems is improved in order to 

utilize the advantages of both meta-heuristic-based and heuristic-based algorithms. The ESSSGA task scheduling 
algorithm implements task scheduling by integrating a GA-based approach to assigning the priority of task execution while 
using a heuristic-based approach based on Critical Path On a Processor (CPOP) with three proposed operations: 

Static Task-Scheduling

Heuristic Based

List-based

Modified Critical Path (MCP)

Dynamic Critical Path (DCP)

Dynamic Level Scheduling (DLS)

Levelized Min Time(LMT)

Mapping Heuristic (MH)

Heterogeneous Earliest Finish Time (HEFT)

Critical Path On a Processor (CPOP)

Clustering-based

Mobility Directed (MD)

Dominant Sequence Clustering (DSC)

Linear Clustering (LC)

Duplication-based 

Critical Path Fast Duplication (CPFD)

Duplication Scheduling Heuristic (DSH)

Bottom-Up Top-Down Duplication Heuristic

Duplication First and Reduction Next

Meta-Heuristic 

(Guided Random Search)

Genetic Algorithms (GA)

Simulated Annealing (SA)

Particle Swarm Optimization (PSO)

Ant Colony Optimization (ACO)

Artificial Bee Colony Algorithm (ABC)

Cuckoo Search Algorithm (CS)

Tabu Search (TS)

Evolution Algorithm
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Segmentation, Extraction, and Load Balancing to complete task-to-processor mapping. We use a genetic-based algorithm 
employs roulette-wheel selection, crossover, mutation, replacement, and proposed new operation named Inversion. 

The outline of ESSSGA for DAG task scheduling on heterogeneous computing systems is given in Algorithm 1. 

4.2. Chromosome representation 
One of the most fundamental tasks in a GA is formulating an encoding mechanism for representing solutions as 

chromosomes. The most generally practiced mechanism for solution representation used in scheduling problem is having 
an array of tasks that represents executing order. For this purpose, in this paper, each chromosome represented by a 2-
D array, where position 𝑖 represents task 𝑇𝑖 and processor 𝑃𝑗 to which the task has been allocated. A chromosome with 

𝑛 genes signifies a solution of the task scheduling problem. Each gene of the chromosome as shown in Figure 3 matches 
to one of the tasks in a DAG. The order of genes in the chromosome then signifies their execution order. Furthermore, 
the priority order of the tasks in the chromosome should be a valid topological order, where the entry task should be 
placed at the beginning of the chromosome, while the exit task should be located at the end. Each chromosome has a 
fitness value, which is the makespan that is resulted from the mapping of tasks to processors within that chromosome. 

 

Figure 2 A sample DAG containing 13 tasks with computation cost matrix [5]. 

4.3. Initialization 
Random population would not offer a suitable area for discovering the search space effectively, while a too large 

random population would then diminish the efficiency of the technique that no solution could be expected in a reasonable 
total finish time. In our proposed algorithm, we adopted an approach using three evaluation criterion [3]: good seeding, 
good uniform coverage, and genetic diversity for generating the initial population. For this purpose, the ESSSGA algorithm 
runs a list-based scheduling to generate chromosomes for the initial population based on CPOP [2]. The basic idea of 
CPOP algorithm is to allocate tasks located in the critical path, on the same processor. Since the communication cost 
between two tasks mapped on the same processor is equal to zero. The other tasks are scheduled on the processor that 
is allocate to the task with greatest communication cost to the current task which minimizes the earliest execution finish 
time of the task.  

In our proposed algorithm we used Segmentation, Extraction, and Load Balancing to complete task-to-processor 
mapping. Segmentation means that all nodes that can be run concurrently at the same level in DAG are classified as a 
group as shown in Figure 4. In each group, the node on the critical path is chosen to be allocated on the fastest processor 
which means Extraction. In Load balancing as demonstrated in Algorithm 2, tasks are divided among the processors.  

Algorithm 2. Initial Population 

Input: 
                   A DAG application; 
Output: 
            The initial population; 
1: Call Segmentation for nodes classification; 
2: PopulationN=0; 
3: while PopulationN < 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 do 
4:  for each segment generated by Segmentation do 
5:   LoadBalancingProcessor = 0; 
6:   for each nodes in a segment do  
7:               LoadBalancingProcessor= LoadBalancingProcessor mod m 
8:               if current node located on CP  
9:                              Set it to the fastest processor; 
10:                               else 
11:                             Set it to the LoadBalancingProcessor; 
12:                             endif 
13:             LoadBalancingProcessor ++; 
14:        endfor 
15:  endfor  
16: PopulationN = PopulationN + 1; 
17: end while; 
18: return the population. 

 



INTERNATIONAL JOURNAL of ACADEMIC RESEARCH                                                                    Vol. 7. No. 1. January, 2015 

 

196 | PART A / 2nd. APPLIED AND NATURAL SCIENCES                                               www.ijar.eu 

 

The initial population contains 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 chromosomes. 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 is the population size to be kept continuously 
through the generations. Brought as a result of a too small population an appropriate area for exploring the search space 
effectively would not be available and a too large population would so harm the efficiency of the result, the population size 
is considered from 10 to 50 with an increment of 5 [5]. 

A detailed description of the initial population is given in Algorithm 2. 

 

Figure 3 A chromosome that encodes a scheduling for a sample DAG as shown in Figure 2. 

 

Figure 4 Segmentation for DAG in Figure 2. 

4.4. Fitness functions and evaluation 
The Fitness function is basically the objective function for scheduling problem. It is used to evaluate the solution, 

and also control the GA selection function. For scheduling problem we can consider factors, such as throughput, total 
schedule length, and processor utilization for the fitness function [44]. In this paper, we consider the total schedule length 
of the DAG as a fitness which is the total finish time among all tasks. For the task scheduling problem, the goal is to find 
a task assignment that certifies the minimum makespan as fitness. The fitness can be formulated as in Eq.(1) 

𝒇𝒊𝒕𝒏𝒆𝒔𝒔(𝒙) = 𝐦𝐚𝐱
 𝑷𝒊∈𝑷

(𝑭𝑻(𝑷𝒊)),                                                                 (1) 

where 𝐹𝑇(𝑃𝑖) is the finishing time of the scheduled exit node on processor 𝑃𝑖. For example, if DAG in Figure 2 

is scheduled on 2 processors, the fitness is determined as total execution time on 𝑃0 as shown in Figure 5. The fitness 
evaluation improves the performance of the GA algorithm. This gives a hint of the best schedule length of near optimal 
schedules. 

A description of Task-to-processor mapping and evaluating the fitness is given in Hence, a more fitted 
chromosome will be selected with higher probability and will get more children. 

Algorithm 3. It runs latter all after other operators which change the chromosomes.  

 

Figure 5 A schedule for the DAG in Figure 2 on 2 processors using the ESSSGA. 

4.5. GA operators 
In this section, the standard genetic algorithm operators for scheduling, such as selection, crossover, mutation, 

and replacement are presented. Furthermore, we address a new operator named inversion. The schedule generated by 
this new operator is located in an approximate area in the search space around the optimal schedule. 

4.5.1. GA selection 

In our algorithm, 10% of the fittest chromosomes in the population are copied without change to the 𝑒𝑙𝑖𝑡𝑖𝑠𝑚 set, 
which is a set of the best chromosomes that are copied to the next population. This method guarantees that the best 
chromosomes are never damaged by either the crossover or the mutation operators.  

A detailed description of roulette-wheel selection is given in Algorithm 4. In this algorithm, the probability 𝑃𝑟𝑜𝑏𝑖 
of each chromosome to be selected can be calculated according to the probability defined by Eq(2), Eq(3): 

𝑷𝒓𝒐𝒃𝒊 =
𝒇𝒊𝒕𝒏𝒆𝒔𝒔𝒊

∑ 𝒇𝒊𝒕𝒏𝒆𝒔𝒔𝒋
𝑷𝒐𝒑𝑺𝒊𝒛𝒆
𝒋=𝟏

  ,                              (2) 

𝑺𝒖𝒎𝒊 = ∑ 𝑷𝒓𝒐𝒃𝒋
𝒊
𝒋=𝟏  ,                          (3) 

Hence, a more fitted chromosome will be selected with higher probability and will get more children. 

javascript:%20display_('A2');


INTERNATIONAL JOURNAL of ACADEMIC RESEARCH                                                                    Vol. 7. No. 1. January, 2015 

 

Baku, Azerbaijan | 197  
 
 

Algorithm 3. Evaluate the fitness 

Input: 
                A DAG application; 
Output: 
               The makespan; 
1: TotalExecutionTime=0; 
2: Pi .ExecutionTime=0; 
3: for each Task in Chromosome that parent_number =0 do      
4:  if Processor Scheduled for this task is idle 
5;              assign this task to its processor;  
6:    for each child of this task do  
7:           reduce parent_number; 
8:               endfor 
9:               Pi .ExecutionTime = TotalExecutionTime +Ti.ExecutionTime;   
10:          endif 
11:          TotalExecutionTime++; 
12:endfor 
13:for each Task on processor Pi do 
14:          if the parents are not executing on this processor;  
15:            add weight between parent and the task to the Pi.ExecutionTime; 
16:          endif 
17:endfor 
18:return Greatest Pi.ExecutionTime as a makespan 

 

4.5.2. GA crossover 
In order to create two 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 chromosomes, crossover operator works on two chromosomes in the 

population called parent chromosomes. In our implementation, a crossover is a procedure of replacing only processors 
of the genes in one parent with the other parent as shown in Figure 6. Therefore, it can generate a new offspring without 
changing the topological order. Crossover is applied with probability of Pc to the chromosomes in the population.  
A description of crossover operator is given in Algorithm 5. 

Algorithm 4. GA Selection 
Input: 
                Current population; 
Output: 
                New Selected Pop; 
1: Select 10% of best chromosomes base on makespan and copy to Selected Pop; 
2: Generate a random number 𝑅 ∈ [0,1]; 
3: for i = 1 to 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 do 
4:  if 𝑆𝑢𝑚𝑖 > R then 
5:   Select the 𝑖𝑇ℎ chromosome; 

6:              return the 𝑖𝑇ℎ chromosome; 
7:         end if 
8: end for. 

4.5.3. GA mutation 
The mutation operator changes a gene with mutation probability. The mutation operator focuses on continuing 

the variety of the population so as to expand the search space, and allows the search process to escape from local optimal 
solutions. We can generate new chromosomes by exchanging two genes in the same segment (same level in DAG or 
mutation area as shown in Figure 7.), without changing the topological order as shown in Figure 8. Mutation is applied 
with probability of Pm to the chromosomes in the population.  

A description of mutation operator is given in Algorithm 6. 

 

Figure 6 double-point crossover operator. 



INTERNATIONAL JOURNAL of ACADEMIC RESEARCH                                                                    Vol. 7. No. 1. January, 2015 

 

198 | PART A / 2nd. APPLIED AND NATURAL SCIENCES                                               www.ijar.eu 

 

Algorithm 5. Crossover operator 

Input: 
                   Two parents from the current population. 
Output:  
            Two new offsprings. 
1: Choose randomly two crossover point i,j; 
2: Cut the father’s chromosome and the mother’s chromosome from i to j and select processors; 
3: Copy genes in father’s chromosome to the son’s chromosome; 
4: Inherit the processor of the mother’s chromosome to the same position of the son’s chromosome; 
5: Copy genes in mother’s chromosome to daughter’s chromosome  
6: Inherit the processor of the father’s chromosome to the same position of the daughter’s chromosome; 
7: replace these two new offsprings with two random selected chromosomes in population. 

 

Figure 7 Mutation areas or segments. 

 

Figure 8 Mutation operator. 

Algorithm 6. Mutation operator 

Input: 
                   A randomly chosen chromosome. 
Output: 
                   A new chromosome. 
1: Choose randomly a gene 𝑇𝑖; 
2: Generate a new offspring by interchanging gene 𝑇𝑖 with a gene in the same level; 
3: return the new offspring; 

 

4.5.4. Inversion Algorithm 
The inversion algorithm works on all chromosomes in the population. It is a procedure of replacing the order of 

genes in the same level. Figure 9 shows the inversion on the sample chromosome shown in Figure 7.  
A description of the inversion operator is given in Algorithm 7. 

 

Figure 9 Inverted chromosome shown in Figure 7 

Algorithm 7. Inversion algorithm 

Input: 
                 Current population. 
Output: 
                 A new inverted population. 
1: for each chromosome in population do 
2:  for each level in current chromosome do 
3:  Reverse the order of genes; 
4: end for; 
5: end for;  

5. TIME AND SPACE COMPLEXITY EVALUATION 

The time complexity of ESSSGA can be evaluated as following: According to Algorithm 1, the time is mostly 
spent in running the searching loop (Steps 2–9) in the proposed ESSSGA. In each iteration of the loop, the algorithm 
needs to execute selection operator, crossover operator, mutation operator, inversion, and fitness evaluation function. 
The time complexity of the selection operator (Step 3) is 𝑂(𝑛). The time complexity of the crossover operator (Step 4) is 
𝑂(𝑛2). The time complexity of the mutation operator (Step 5) is 𝑂(𝑛2). The time complexity of the inversion algorithm 

(Step 7) is 𝑂(𝑛2 × 𝑙), where 𝑙 is the number of levels in the DAG. The time complexity of the fitness evaluation function is  
𝑂(𝑒 × 𝑚), where 𝑒 is the number of edges in the DAG and 𝑚 is the number of processors. Therefore, the time complexity 
of ESSSGA is 𝑂(𝐺 × (𝑛 + 𝑛2 + 𝑛2 + 𝑛2 × 𝑙 + 𝑒 × 𝑚)), where 𝐺 is the number of generations performed by ESSSGA. For 

a dense graph where the number of edges is 𝑂(𝑛2), the time complexity is  𝑂(𝐺 × n2 × 𝑚). 
The space complexity of ESSSGA is analyzed as follows: In ESSSGA, to store each chromosome an array of 

size 𝑛 × 2 is needed. There are 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 chromosomes in the initial population, hence, the space complexity of ESSSGA 
is 𝑂(𝑃𝑜𝑝𝑆𝑖𝑧𝑒 × 𝑛 × 2). 
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6. SIMULATION AND RESULTS 

In this section, the performance of the ESSSGA is presented in comparison with the DCP[4], DSC[11], MD[7], 
MCP[7], DLS [8], HEFT [2], CPOP [2], LDCP [45], H2GS [5], and MPQGA [3] which are the best existing scheduling 
algorithms for heterogeneous multiprocessor systems. To evaluate our proposed algorithm, we have implemented it in 
C# using an Intel processor Core 2 Duo @ 2.1 GHz and 2 GB RAM. 

6.1. Performance metrics 
Several metrics were used for the performance evaluation. In our experiments, the performance metrics chosen 

for comparison are Makespan, Scheduling Length Ratio (SLR), Speedup, and Efficiency that are described as follows:
  

6.1.1. Makespan 
The makespan is the total tasks execution time in scheduling (schedule length) formulated as Eq. (4) 

𝒎𝒂𝒌𝒆𝒔𝒑𝒂𝒏 = 𝑭𝑻( 𝑻𝒆𝒙𝒊𝒕),                             (4) 

where 𝐹𝑇( 𝑇𝑒𝑥𝑖𝑡) is the finishing time of the scheduled exit node [46]. 

6.1.2. Scheduling length ratio (SLR) 
The Scheduling Length Ratio (SLR) of a given schedule is defined as the normalized schedule length normalized 

to the lower bound of the schedule length. Since a large set of application graphs with different characteristics is used, it  
is necessary to normalize the schedule length to the lower bound [2]. On the other hand, SLR is the ratio of the parallel 
time to the sum of weights of the critical path tasks on the fastest processor which is calculated using Eq. (5). 

𝑺𝑳𝑹 =
𝒎𝒂𝒌𝒆𝒔𝒑𝒂𝒏

∑ 𝒎𝒊𝒏𝑷𝒋∈𝑸{𝑾(𝑻𝒊,𝑷𝒋)}𝑻𝒊∈𝑪𝑷𝒎𝒊𝒏

                          (5) 

The 𝐶𝑃𝑚𝑖𝑛 is the critical path of the unscheduled application DAG based on the computation cost of tasks on 
the fastest processor 𝑃𝑗. The denominator is equal to the sum of computation costs of tasks located in 𝐶𝑃𝑚𝑖𝑛 when they 

are scheduled on 𝑃𝑗 and provides the lower bound on the schedule length [3]. The SLR value of any algorithm for a DAG 

cannot be less than one, since the denominator in the equation is a lower bound for the completion time of the graph. In 
order to compare the performance of scheduling algorithms, the average SLR values over several task graphs were used 
in the experiments where the smaller the SLR the better the result [3]. 

In some papers, the Normalized Schedule Length (NSL) is used in place of SLR as shown in Eq. (6) [5, 45, 47]. 

𝑵𝑺𝑳 =
𝐒𝐜𝐡𝐞𝐝𝐮𝐥𝐞 𝐋𝐞𝐧𝐠𝐭𝐡

∑ 𝑪𝒊,𝒂𝒕𝒊∈𝑪𝑷𝒍𝒐𝒘𝒆𝒓

                           (6) 

6.1.3. Speedup and efficiency 
The Speedup value of a schedule is defined as ratio of the sequential schedule length obtained by assigning all 

tasks to the fastest processor, to the parallel execution time of the task schedule [2] which is calculated using Eq. (7). 

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
𝒎𝒊𝒏𝑷𝒋 ∈𝑸{∑ 𝑾(𝑻𝒊,𝑷𝒋)𝑻𝒊∈𝑻 }

𝒎𝒂𝒌𝒆𝒔𝒑𝒂𝒏
                       (7) 

Efficiency is the ratio of the Speedup to the number of processors used to schedule the graph. In addition to 
providing minimum SLR values, the task scheduling algorithms target to maximize the speedup and efficiency [2]. 

In this paper, every experimental result is the average value of 50 separate runs. 

Table 2 Comparative results based on sample DAG in Figure 2 

Makespan SLR Speedup No. of processors Algorithm 

64 2.06 1.44 2 Longest Dynamic Critical Path (LDCP) 

65.5 2.1 1.4 2 Dynamic Level Scheduling (DLS) 

65.5 2.1 1.4 2 Heterogeneous Earliest Finish Time (HEFT) 

61.5 1.98 1.49 2 Hybrid Heuristic–Genetic Scheduling (H2GS) 

56 1.8 1.64 2 ESSSGA 

6.2. Performance results on sample graphs 
Considering the application DAG shown in Figure 2, the schedule generated by the ESSSGA algorithm has a 

length of 56 (Figure 5) which is shorter than the schedules generated by the LDCP (64), DLS (65.5), HEFT (65.5), and 
H2GS (61.5) [5] as shown in Table 2.  

The next results, simulated in two DAGs as shown in Figure 10 and Figure 11 are presented in Table 3, Table 

4, and Table 5. The following parameters are used in the algorithms throughout the simulations [44]. 

 
 Population size = 20 and 30. 

 Maximum number of generation = 1000 

 Crossover probability (Pc) = 0.7 

 Mutation probability (Pm) = 0.3 
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(a)   (b)   

Figure 10 (a) A sample DAG with 9 tasks, (b) A sample gaussian graph [44] 

Table 3 Comparative results based on sample DAG in Figure 10 (a) 

Makespan  SLR Speedup No. of processors Algorithm 

29 4.14 1.03 3 Modified Critical Path (MCP)  

32 4.56 0.94 2 Dynamic Critical Path (DCP) 

27 3.85 1.11 4 Dominant Sequence Clustering (DSC) 

32 4.56 0.94 2 Mobility Directed (MD) 

20 2.85 1.5 2 

ESSSGA 20 2.85 1.5 3 

20 2.85 1.5 4 

Table 4 Comparative results based on sample DAG in Figure 10 (b) 

Makespan  SLR Speedup No. of processors Algorithm 

520 1.74 1.15 4 Modified Critical Path (MCP)  

440 1.47 1.36 3 Dynamic Critical Path (DCP) 

460 1.54 1.3 6 Dominant Sequence Clustering (DSC) 

460 1.54 1.3 3 Mobility Directed (MD) 

440 1.47 1.36 3 

ESSSGA 410 1.37 1.46 4 

410 1.37 1.46 6 

 

Figure 11 A sample DAG with 8 tasks [3] 

Table 5 Comparative results based on sample DAG in Figure 11 

Makespan  SLR Speedup No. of processors Algorithm 

80 3.74 1.14 3 Heterogeneous Earliest Finish Time (HEFT) 

86 4.02 1.06 3 Critical Path On a Processor (CPOP) 

65 3.04 1.4 3 Multiple Priority Queues Genetic Algorithm (MPQGA) 

61 2.85 1.5 3 ESSSGA 
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7. CONCLUSIONS 

In this paper, we present a new algorithm, named ESSSGA, for static task scheduling on heterogeneous 
multiprocessor systems. The objective of this algorithm is to find a schedule for minimizing the total execution time. For 
this purpose, the aim is to find a hybrid algorithm was presented to deliver the best schedule length of near optimal 
schedules using the advantages of both meta-heuristic-based and heuristic-based algorithms. 

In future study, we found more factors which affect the efficiency of the ESSSGA algorithm, such as the initial 
population size where a method by which its individuals are chosen, the particular crossover, and mutation operators. 
Further we will test the ESSSGA on more standard task graphs, more processors, and variable amounts of heterogeneity 
among processors and also tasks on random graphs. We have even planned to extend ESSSGA using Cuckoo 
optimization algorithm [48] to minimize makespan. 
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