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In order to covering a wide range of the flow regimes, a new relaxation time formulation for the lattice
Boltzmann method, LBM, by considering the rarefaction effect on the viscosity and thermal conductivity has
been presented. To validate the presented model, fully developed pressure driven flow and developing
thermal flow in micro/nano channel have been modeled. The results show that in spite of the standard LBM,
the velocity and temperature distributions, the volumetric flow rate and the local Nusselt number obtained
from this modified thermal LBM, agree well with the other numerical and empirical results in a wide range of
Knudsen numbers.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

By reducing the dimensions of a channel, heat transfer area per
unit volume increases and therefore the overall heat transfer
coefficient per unit volume increases. Flow and heat transfer in
micro/nano devices is different frommacro devices. This is because of
the fact that when the mean free path, λ, of the molecules becomes
comparable to the characteristic length of the flow domain, the
continuum flow model (Navier Stokes equations) breaks down and
the Knudsen number, Kn, defined as the ratio of the molecular mean
free path to the characteristic length of the system, increases. For
Knb10−3 the continuity assumption with no slip boundary condi-
tions is valid. For 10−3bKnb10−1 (slip flow regime) the velocity and
temperature of the gas near the wall are no longer equal to the wall
velocity and temperature respectively and for KnN10−1 (transition
and free molecular flow regime) the continuity assumption is under
question [1].

Although molecular based methods such as Molecular Dynamic
(MD) simulation and Direct Simulation Monte Carlo (DSMC)methods
[2] havemade some progresses inmicro/nano fluidic flow simulations
[3,4], they are often too expensive for most practical applications. A
midway approach is the Lattice Boltzmann Method, LBM, obtained by
discretization of Boltzmann equation in time and velocity space [5]. In
principle the Lattice Boltzmann Equation (LBE) is a more fundamental
equation compared to the Navier Stokes equations, which is valid for
all ranges of Knudsen number [6,7], thus, it has been believed that the

LBM has a greater potential to model high Knudsen flows than the
methods based on the Navier Stokes equations [8].

Recently there have been attempts to use the LBM for gaseousflows
in slip flow regime [9–15] but only a few papers can be mentioned for
the use of LBM in transition regime [16–23]. To this end, twomethods
are proposed based on the use of higher order LBM [16–19] and the
modification of themean free path [18–22]. Themulti-speed or higher
order LBM has been developed to increase the order of accuracy in the
discretization of velocity phase space. Although Ansumali et al. [18]
have demonstrated that the high order LBMs have improved current
capability but Kim et al. [19] showed that this method can predict
the rarefaction effects only for Kn=O(0.1) and at large Kn, the mass
flow rate cannot be predicted properly by thesemethods. Additionally,
the high-order LBMs with large numbers of discrete velocities are not
numerically stable [24].

On the other hand, for high Kn flows that the mean free path, λ,
becomes comparable with the channel dimensions, the wall bound-
aries reduce the local mean free path. Therefore, by using a geometry
dependent local mean free path, Tang et al. [22] captured the non-
linear high order rarefaction phenomena, but this local mean free path
is complicated and cannot be used for complex geometries such as
porous media.

All of the mentioned articles investigated the isothermal (athermal)
flows. Current thermal LBE models are confined to the continuous and
slip flow regimes [25–31] and the use of the LBM for higher Kn regimes
has not been successful so far.

In the previous article [23], we proposed a new relaxation time
formulation in such a way that wide range of Kn regimes of flow can
be simulated more accurately. In this article, by relating the thermal
conductivity to the local Kn, a new thermal relaxation time model is
suggested which can simulate wide range of thermal flow regimes.
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2. Thermal lattice Boltzmann method

The continuum Boltzmann equation is a fundamental model for
rarefied gases in the kinetic theory [32,33]. It is an integro-differential
equation in which the collective behavior of molecules in a system is
used to simulate the continuum mechanics of the system. In this
article the two distribution function thermal lattice Boltzmann model
based on the work of He et al. [34] is used which utilizes two different
distribution functions, one for the velocity field (f) and the other for
the internal energy field (g):

∂t f +
→
ξ:∇
� �

f =
f−f eq
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g =
g−geq
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where λf and λg are the relaxation times for the number and energy
density distribution functions respectively, and f eq and geq are the
equilibrium distribution functions approximated as Maxwellian form
given by Eqs. (3), (4):
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where R is the gas constant and ρ, →u and T are density, velocity and
temperature, respectively.

In the present work, the nine velocity 2D model (D2Q9), is used to
discrete momentum space (Fig. 1) [35]. In this model, the discrete
velocity field →ci = cix; ciy
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where c=Δx/Δt. Δx and Δt are lattice spacing and time step, re-
spectively. He et al. [34] used a second order discretization scheme for
Eqs. (1), (2). The resulting equations are:
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where τf=λf/Δt and τg=λg/Δt are the non-dimensional relaxation
times. The new variables are introduced in order to have an explicit
scheme, i. e.

f = f +
1
2τf

f−f eq
� � ð8Þ

g = g +
1
2τg

g−geq
� � ð9Þ

The functions f eq and geq can be calculated through a second order
Taylor series expansion of the Maxwell distribution function, Eqs. (3),
(4), followed by a discretization of the result on the D2Q9 lattice,
which results in:
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The flow parameters are then calculated in terms of the particle
distribution function fi

→x; t
� �

, by:

ρ = ∑
i
f i; ρ→u = ∑

i
ci f i; ρε = ρRT = ∑

i
gi υ = c2s τf ð12Þ

3. LBM for high Knudsen number flows

From the DSMC method and the linearized Boltzmann equa-
tion [36], it is evident that the velocity profiles of flow in a channel in
the transition and free molecular regimes remain approximately
parabolic. But the velocity profile obtained from continuum based
relations does not predict the flow rate properly. This is because of
the fact that the dynamic viscosity which is related to the diffusion of
momentum due to the intermolecular collisions must be modified
to consider the diffusion of momentum due to the intermolecular
collisions and the collision of molecules with the walls. The kinetic
theory description for dynamic viscosity requires:

μ0 = λυρ ð13Þ

where υ is the mean thermal speed. Using the mean free path, λ, in
this relation is valid as long as intermolecular collisions are dominant
(e. g. Kn≪1). However, for increased rarefaction the intermolecular
collisions are reduced significantly and in the free molecular flow
regime only the collisions of the molecules with the walls should be
considered. Therefore Polard and Present [37] suggested that for the
free molecular channel flow the dynamic viscosity should be based on
the characteristic length scale, h;

μ∞ = hυρ ð14ÞFig. 1. Configuration of the lattice and discrete velocity vectors, D2Q9 model.
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Since the diffusion coefficient is based on λ in slip or continuum
flow regimes and h in the free molecular flow regime, Karniadakis and
Beskok [1] considered an effective dynamic viscosity to model the
variation of diffusion coefficient:

μeff = ρυ
1

1
λ + α 1

h

" #
=

μ0
1 + αKn

ð15Þ

The value α=2.2 was suggested in their effort to match their
numerical results for the mass flow rate in a channel with the
corresponding DSMC results.

The thermal conductivity, k, of a gas is a function of its density as
well as its temperature. Specifically, k is proportional to the mean
free path with the proportionality coefficient a general function of
temperature, i.e. [1],

k0 = F
T
T0

� �
ρ
ffiffiffiffiffiffiffiffiffi
2RT

p
Rλ ð16Þ

Similar to the dynamic viscosity, the characteristic length scale
of the thermal conductivity in the free molecular channel flow is the
channel dimension, h:

k∞ = F
T
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� �
ρ
ffiffiffiffiffiffiffiffiffi
2RT

p
Rh ð17Þ

Thus, we have proposed the following hybrid formula to model the
variation of thermal conductivity:
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From the kinetic theory, the kinematic viscosity is υ = 1= 2cλ
where c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RT = π

p
is the mean molecular velocity. Combined with

Fig. 2. Normalized velocity distribution across the micro/nano channel.

Fig. 3. Volumetric flowrate as a function of exit Kn.
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the kinematic viscosity expression of LBM (υ=cs
2τf) and by using the

effective viscosity, we have defined a new effective relaxation time in
the LBM as follows:

τeff =
Kn

1 + αKn
N ð19Þ

where N is the number of lattice across the characteristic length of the
flow domain. The thermal relaxation time can be obtained from the
following relation:

τg = Prτeff ð20Þ

Therefore, modifying the hydrodynamic relaxation time, τf,
modifies the thermal relaxation time spontaneously.

4. Results and discussion

4.1. Fully developed pressure driven flow

In order to validate the presented model, pressure driven flow in
micro/nano channel with different Knudsen numbers, are simulated.
The slip reflection boundary condition (SRBC) [38] which is a com-
bination of the bounce back and specular boundary conditions is used
to predict the slip velocity on solid walls. In Fig. 2 the non-dimensional
velocity profiles normalized by local average velocity which is ob-
tained in the transition flow regime for K=0.1 to 10 is plotted across
the channel, where K is

ffiffiffi
π

p
= 2

� �
Kn. The corresponding linearized

Boltzmann solution is also included [36]. It is seen that the LBM
velocity profile and the linearized Boltzmann solution agree quiet well
through the Knudsen numbers up to 10. However, a little discrepancy
appears very close to the walls. It is because of the fact that the
intermolecular forces between fluidmolecules and solid walls become
important near the walls, in the transition regime [39].

Fig. 4. Nusselt number obtained from the DSMC and the new LBM.

Fig. 5. The Nu values obtained from the standard LBM and modified LBM for different inlet Knudsen numbers.
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Fig. 3 shows the normalized flow rate throughmicro/nano channel
as a function of the Knudsen number. It can be seen that by increasing
the Knudsen number, the flow rate decreases initially and has a
minimum value for Kn≈1, then it increases [40,7]. This phenomenon
is called Knudsen minimum effect [41]. Although from the kinetic
theory of gases, there is no analytical formula for flow rate in the

transition regime, there are two asymptotes for normalized flow rate
which is evident in Eq. (21) [33].

Q 0 = 6Knð Þ−1 + s + 2s2−1
� �

Kn Kn<1

Q∞ = 1=
ffiffiffi
π

p� �
ln Knð Þ Kn→∞

ð21Þ

where s=1.015.
It can be seen from the figure that our results are in good agree-

ment with those of the Eq. (21) as well as the linearized Boltzmann
method [7]. In Fig. 3, the results of the standard LBM, are also
presented. These results agree very well for flows with Kn less than
0.1, which corresponds approximately to the slip flow regime, but
the predicted flow rate is overestimated in the early transition flow
regime for KnN0.4 and diverges from results of linearized Boltzmann
method [42,43]. However, the present results by modifying LBM
are accurately compatible with linearized Boltzmann method in the
entire transition flow regime. As shown in Fig. 3, the Knudsen mini-
mum effect is captured for Kn≈1 by using our new model.

4.2. Developing thermal flow

The developing thermal flow in micro/nano channels is another
test case for the present lattice Boltzmann model. A uniform inlet
flow with the velocity U0=0.1 and temperature T0 is imposed at the
inlet of the channel. It is assumed that the channel walls are heated
uniformly with a constant temperature Tw (Tw=10T0). In this work,

Fig. 6. Local wall Nu for different Knin.

Fig. 7. The temperature distribution at different positions for different inlet Knudsen numbers.
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the Diffuse Scattering Boundary Condition (DSBC) [44,45] was used
for slip velocity and temperature jump boundary conditions.

Fig. 4 compares the values of Nusselt number, Nu, at the fully
developed region obtained from the modified LBM with the results
based on the DSMC method [46]. During the simulation, the Prandtl
number is fixed as Pr=2/3 and the Nu is defined as

Nu =
2H ∂T = ∂yð Þw

Tw−TBð Þ ð15Þ

where TB is the bulk temperature and H is the channel width. It can be
seen from the figure that the results, have good agreement for Kn≤0.2
but by increasing the Knudsen number, the LBM over predicts the Nu
values, but it can be seen from Fig. 5 that the Nu values obtained from
the modified LBM are less than those of the standard LBM. Therefore
the new model modifies the results of LBM.

Fig. 5 shows the Nu values obtained from the standard LBM and
modified LBM along the entrance region of the channel for Knin=0.01,
0.3, 0.5, and 0.8. In the present work Pr is fixed as 0.7 but, Kn is
variable along the channel and can be expressed as [47]:

Kn
Knin

=
u�ffiffiffiffiffi
T�
B

p ð16Þ

where ū*=ū/U0 and TB*=TB/T0 are non-dimensional average velocity
and non-dimensional bulk temperature respectively. Furthermore,
the steady state Nu obtained from the numerical solutions based on
the compressible momentum and energy equations with slip velocity
and temperature jump boundary conditions is considered for Knin=
0.01[47]. Similar to the high Knudsen numbers (Fig. 4), it can be seen
from the figure that for the low values of Kn (Kn=0.01-slip regime)
both of the LBMs have the same results, but for KnN0.7, the standard
LBM are completely unstable and cannot present proper results.

Local wall Nu of the thermal developing flows for different Knin
(slip and transitional regimes) is shown in Fig. 6. From the definition
of Nu, it can be seen that Nu is inversely proportional to the
temperature jump. By increasing Kn, the slip velocity and temperature
jump near the wall increases. Therefore, it can be seen from the figure
that the increase of Knudsen number causes the fully developed
Nusselt number decreased and the entrance region occurs at higher
values of X.

In Fig. 7 the temperature distribution along the channel is shown.
From the figure, obvious temperature jumps on the plates can be
observed due to the rarefaction effect. As expected, the flow of this
kind quickly becomes fully developed after a short entrance region
where the hydrodynamic and thermal boundary layers are simulta-
neously developed.

5. Conclusion

The new LBM is capable of simulating the flow and heat transfer
for a wide range of Knudsen numbers including the transition regime.
It is shown that the proposed model by modifying the relaxation time
in LBM is able to predict the flow features in micro and nano scales for
wide range of Kn, accurately. Non-dimensional velocity distribution
and the well-known Knudsen minimum effect in micro and nano
channels are achieved for Kn≈1 and local Nusselt numbers are in
good agreement with the exiting numerical data for Kn≤0.2.
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