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ABSTRACT 

 

In this article, a new block- oriented nonlinear identification method is proposed. This modeling 

method uses the Wiener model comprised of a linear dynamic block that is followed by a nonlinear static 

block. The linear block is described by the subspace identification algorithm whereas the nonlinear one is 

represented via the Least Squares- Support Vector Machine. The proposed method is tested with a 

practical nonlinear chemical plant named as CSTR. A dataset of the input-output signals gathered from 

the system is applied to show the superiority of the method. 
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1. INTRODUCTION 

 

Throughout the literature, gray-box models of the nonlinear dynamical processes have been 

attracted a considerable attention due to their effective capabilities. These methods use input/output 

signals to form a description of the plant with some prior information about the system’s dynamical 

equations.  

In the recent decades, Block – Oriented Nonlinear methods are introduced to represent the 

nonlinear systems with lower parameters in comparison with the other methods [1]. The most common 

and simplest schemes are the Wiener and Hammerstein structures. Wiener model composed of a linear 

dynamic block followed by a static nonlinear block. Wiener structure has a good proficiency to describe 

almost all nonlinear plants with arbitrarily high accuracy [2]. Hammerstein subsystems are put into the 

model in the reverse order. these two models are applied to represent a huge number of nonlinear plants 

such as chemical plants [3, 4], high power amplifier [5], tubular reactors [6], control valve actuators [7], 

physiological systems [8], and solid oxide fuel cells [9] just to name a few (Fig.s 1, 2).      

  

 
Fig. 1. Wiener Model 

 

 
Fig. 2. Hammerstein Model 
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Subspace identification has a long history with many theoretical formulations to identify linear 

systems, successfully [10, 11]. N4SID, MOESP and CVA are some of the most convenient ones.  

Recently, some papers develop this idea for nonlinear dynamic systems. In this regard, kernel-based 

methods such as neural network and support vector machine can play an important role. Presented in this 

paper, Least Squares- Support Vector Machine (LS-SVM) is applied to extend the subspace identification 

method for nonlinear behavioral processes into Wiener structure. 

This paper is organized as follows. The subspace identification and the LS-SVM regression are 

briefly presented in Section 2 and 3. In Section 4, the problem statement and the proposed method is 

described. Section 5 provides simulating example to show performance of the proposed method. Section 

6 concludes the paper. 

 

2. SUBSPACE IDENTIFICATION (N4SID METHOD) 

 

In this paper, the linear dynamic part of the Wiener model is determined using Numerical 

Subspace State Space System IDentification (N4SID). Namely, given a data set of measured input-output 

signals, the linear approximation of the system can be described as follows:  

( 1) ( ) ( )
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( ) ( ) ( )

k k k
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k k k


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


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 (1) 

where (k)
n

u   and (k)
p

y   are the measured input and output signals at the time instant k, 

respectively and ( )
n

x k   contains the state vector of the model. 
n n

A ,
n m

B , 
p m

C , and 

p m

D  are called state, input, output, and direct feedthrough matrices, respectively . In this regard, the 

matrix pairs ,A C  and  ,A B are assumed to be observable and controllable, respectively. Subspace 

identification is composed of two basic stages: firstly, state space variables should be obtained from 

input-output data using the conventional linear algebra tools such as Linear-Quadratic decomposition or 

Singular Value Decomposition. In the second phase, the matrices of the state-space representation can be 

derived in a linear least squares problem. More details on the subspace identification procedure (N4SID 

method) can be found in [10].  
 

3. SUBSPACE IDENTIFICATION (N4SID METHOD) 

 

In this manuscript, the nonlinear static block is estimated using Least Squares-Support Vector 

Machine (LS-SVM). Based on the context of the convex optimization and statistical learning theories, the 

nonlinear regression problem is formulated in the dual space using Lagrange coefficients. 

In the other words, a data set of the input-output signals 
1

( ), ( )
N

k
u k y k


 from a nonlinear model as  
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where ( )
p

u k   determines the input data, ( )
m

y k   represents the output signal , and (.)  is 

used to denote the kernel function for the nonlinear mapping. The coefficients w and b can be found in the 

following optimization problem  

2

1

1 1
min (k)

2 2

( ) ( ( ))

N

T

k

T

w w e

subject to y k w f u k c






 


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where 
1

(k)
N

k
e


 show the output error terms and   defines a regularization constant term [12]. 

 

4. PROBLEM DESCRIPTION 

 
Consider the nonlinear state-space system  

 

 

( 1) ( ), ( )

( ) ( )

k k k

k h k



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x = f x u

y = x
 (4) 

where ( )
n

k x ¡  the state, ( )
m

k u ¡  the input, and ( )
p

k y ¡  are the output vectors and 

n m n

  f  and 
n p

h   are assumed to be nonlinear smooth functions. Using a finite number 

of the measured input-output signals, the main goal of this article is to propose a Wiener model that has a 

same dynamic behavior as the system. 

In the training phase, the linear dynamic block should be approximated using the N4SID method 

firstly, and then in the second phase the static nonlinear block is estimated in the LS-SVM procedure. 

These two steps are implemented in the offline mode according to the input-output data set 

 
_

1
( ), ( )

N offline

k
k k


u y  . In the online test stage, the generated model outputs are compared to the system 

outputs. 

In the LS-SVM regression, Gaussian kernel function is applied for the high dimensional feature 

spaces. Gaussian kernel function is also useful to give proper smoothness and good generality in the 

unknown input range condition. 

In the LS-SVM regression approach, the nonlinear static block is represented as  

( ) ( ( )) ( ( ))
T

y k f L k w L k b    (5) 

where h
n

W   is the weight vector, (.) : h
nn

   is the nonlinear map function, and b is the bias term. 

In this regard, the modeling error for sample k is defined as ( ) ( ) - ( )e k y k y k  and the objective function 

in the LS-SVM regression is as bellows  

 

2
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1
min J(w, e)

2 2

( ) ( ( ))

M

T

k
w b e

k

T

t t k

w w e

subject to y k w L k b e







 

  


 (6) 

where the scalar y is a constant value to handling a governed trade-off between the smoothness and data 

fitting. Considering above formulation, the constrained optimization problem can be solved using 

Lagrangian as  

1

( , , ; ) J(w, e) ( ( ( )) ( ))

M

T

k t k t

k

w b e w L k b e y k   
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where ( 1, , N)
k

k   are the Lagrange coefficients. The optimal conditions for Lagrangian would 

be resulted to  
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(8) 

Eliminating 
k

e  and w in the above equations, the following linear equations can be extracted as  

1

00 1

1
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b
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 
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 (9) 

where ( (i) (j))
T

ij
L L  , [ (1), (2), , ( - )]Y y y y N offline  ,

1 2
[ , , , ]

T

N offline
   


 ,and 

ones( _ ,1)N offline1 . The output of the LS-SVM regression, namely the Wiener model output, can be 

determined as  

1

( ) ( ( ), ( ))

M

i

i

y k K L i L k b


   (10) 

where 
k

  and b are the solutions of Equation (9). 

 

5. SIMULATION RESULTS 

 

Performance of the suggested modeling procedure is illustrated using a practical chemical system. 

Continuous Stirred Tank Reactor (CSTR) is the selected benchmark. Chemical reactors often have 

significant heat effects, so it is important to be able to add or remove heat from them. In a CSTR the heat 

is added or removed by virtue of the temperature difference between a jacket fluid and the reactor fluid. 

Often, the heat transfer fluid is pumped through agitation nozzle that circulates the fluid through the 

jacket at a high velocity. The product concentration can be controlled by manipulating the feed flow rate 

[13].  

The gathered input-output data from a practical plant [14] are applied to show the capability of the 

method. In this system, the flow of the coolant liquid is used to adjust the output concentration (Fig. 3). 

In the offline training phase, the Wiener model subsystems are approximated using a dataset of 

800 measured input-output samples. These signals are shown in Fig. 4, respectively. The reminder of the 

data is utilized to test the algorithm in the online state. Fig. 5 shows the input signal that is applied in the 

online stage. The measured output of the CSTR system in the online phase is shown in Fig. 6, too. 

The Root Mean Squared Error (RMSE) criterion considered as  
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which is computed at the end of the online identification task is equal to 1.1065 

 

 

 
Fig 3. CSTR Layout 
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Fig. 4. Input-Output Signal in the offline mode 
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Fig. 5. Input Signal in the online mode 
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Fig. 6. Output Signal in the online mode 

 

CONCLUSION 

 

A novel block-oriented identification method is proposed for the nonlinear systems. The wiener model 

composed of a linear dynamic subsystem affected its output by a nonlinear static subsystem is used. A 

linear approximation computed by the N4SID subspace identification is considered as the linear 

subsystem. The nonlinear static subsystem which is estimated by the LS-SVM regression is applied to  

describe the output nonlinear effects. Simulation results that are conducted on the CSTR system approve 

the capability of the method. 
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