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Abstract: - In this study, dynamic characteristics of a rotating multi blade system which contains an 
inconsistent blade are determined. The main goal is to investigate the effect of an inconsistent blade on the 
system natural frequencies. For this purpose, natural frequencies of a perfect system and a system 
containing one inconsistent blade have been compared to show how this inconsistency affects the natural 
frequencies of the system. It has been assumed that the inconsistent blade differs from the other in term of 
material property. The vibration frequency characteristics have been analyzed using assumed mode method 
along with Hamilton’s law. Based on the results, it is demonstrated that natural frequencies related to some 
modes of the system are affected in case of inconsistent blade while for the most of the modes, they are not 
affected. 
 
Keywords: - Natural frequency, Multi blade system, inconsistent blade, Assumed mode method 

 
 

Nomenclature 
Parameter Definition 

h Cross section height 
b Cross section width 
l Beam length 
α Ratio of variation in Cross section height 
β Ratio of variation in Cross section width 
r Disk radius 
s Stretch of the beam 
u Axial displacement the beam 
v Chord-wise displacement of the beam 
Ω Rotating velocity 
T Kinetic energy 
ρ Density 
A Cross section area 
U Strain energy 
E Young’s modulus 
I Second area moment of inertia 

UD 
The energy term of the system which are 

caused by the flexibility of the disk 

US 
The energy term of the system which are 

caused by the flexibility of the shroud 

aD 
The positions where the beam is 

connected to the disk 

aS 
The positions where the beam is 

connected to the shroud 
kD Disk stiffness variable 
kS Shroud stiffness values 
φ Bending mode function of the beam 
q The generalized coordinate 
µ The number of coordinates 

I0 
Second area moment of inertia of the 

cross section at the fixed end 

 
1. INTRODUCTION  
 

Plenty of engineering items, such as turbines, 
compressor, helicopter rotors, propellers of ships or 
planes, robot handlers, and structures for space 
whirling contain rotating beams. To create well-
designed structures, the analysis of their vibration 
characteristics, including natural frequencies and 
mode shapes is of great importance. A considerable 
variation can be noticed in vibration characteristics of 
rotating structures compared to those in non-rotating 
ones.  

In order to evaluate the natural frequency of a 
single rotating cantilever beam, Southwell and Gough 
developed a model [1], in which, according to the 
Rayleigh energy theory, natural frequencies of a 
rotating cantilever beam could be measured via a 
widely-used simple equation called Southwell. Then, 
to increase the accuracy of natural frequencies, 
Schilhansl introduced a relatively different linear 
equation, in which only the rotating beam bending 
motions are considered [2]. The mentioned method of 
vibration analysis was developed in numbers of 
studies in order to determine natural frequency of 
rotating beams under various conditions [3-9].             
In one of these researches, a dynamic analysis 
method, including a lot of hybrid deformation 
variables, was proposed to reach equations of motion 
[10]. Due to the linearity of the existent equations in 
this method, no replacement procedure is needed to 
analyze the vibration and the equations can be utilized 
directly. Compared to the previous ones, this method 
is less complicated, more compatible, and more 
precise [11, 12]. 
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Beyond vibration of single rotating beam, various 
studies have been conducted to analyze vibration 
characteristics of rotating multi blade system [13-15], 
in order to develop application of modal analysis in 
vital industrial equipment such as turbines. The 
majority of the mentioned studies are limited to the 
systems which contain consistent blades. However, 
equipment with multi blade system usually suffers 
from the existence of one or more inconsistent blades 
in their systems. In this case, the vibration behavior 
of the system such as natural frequencies will be 
changed. In order to keep the working frequencies 
away from the system natural frequencies, it is 
essential to be aware of the way of variation in system 
natural frequencies. Hence, the concept of vibration 
characteristics of the multi blade system containing 
inconsistent blade can be important. In this study, 
comparing the natural frequencies of a multi blade 
system with and without inconsistency will 
demonstrate the way of variation of system natural 
frequencies. 
 
2. EQUATION of MOTION 
 

The model of blade is considered as a slender 
beam which consists of rectangular and tapered cross 
section beam. This model is shown in Fig. 1. 
 

 
Figure 1. The schematic of the tapered blade model 

 
The blade in this model contains homogeneous 

and isotropic material features. The shear and rotary 
inertia effects are neglected, since the beam has a 
slender shape. The rate of variation in the cross 
section dimensions is described by two dimensionless 
parameters α and β, as shown in Fig 1. Assuming a 
high value of out-of-plane rigidity for the blade, the 
out-of-plane motion is neglected and only the in-
plane motion is considered. The schematic of 
deformed and un-deformed beams are presented in 
Fig. 2. The beam is considered as a cantilever of a 
length l which is fixed to a disk with a radius r. When 
the beam is deformed, the point P0 placed at the 
position of point P. Hence, axial displacement u and 
the chord-wise displacement v can be used to define 
the deformation vector. 

 
 

Figure 2. Configuration of rotating blade displacement 
 

It was shown [5] that the relation between 
stretching of the beam (s), u and v is as below: 
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where σ is the dummy variable employed for 
integration. Using the defined deformation terms 
along with considering the beam rotating velocity (Ω) 
as a constant value (Ω=0), the kinetic and strain 
energies of the beam can be expressed as below:  
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where E is the Young’s modulus. I(x) is the second 
area moment of inertia and A(x) is the cross-section 
area which are functions of x. In case of multi blade 
systems such as turbine, stiffness of the shroud and 
disc results in additional terms of energy. In this 
study, the disc and shrouds are considered as the 
discrete springs with corresponding stiffness values. 
Hence, due to flexibility of the disc and shrouds, the 
energy terms can be written as: 
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and 
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In the above expressions, UD and US are the energy 
terms of the kth blade of the system which are caused 
by the flexibility of the disk and the shroud. aD and aS 
are the positions where the beam is connected to the 
disk and the shroud, respectively, and KD and KS are 
the corresponding stiffness values. The superscript k, 
k+1 and k-1 above the displacement term are the 
blade numbers. When the strain energy and kinematic 
expressions are placed in Eq. 6, the equation of 
motion can be derived: 
 

  0T U dt                                                      (6) 

 
A group of hybrid deformation variables can be 

approached by an assumed-mode method called the 
Rayleigh-Ritz. The bending displacement is 
approximated by mode functions as follows: 
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where φi is the bending mode function of the beam, qi 
is the corresponding generalized coordinate, and µ is 
the number of coordinate qi. Previously, it was 
demonstrated that the coupling effect between 
extensional and bending motions has a weak 
influence on the vibrational characteristics of the 
rotating blades [13]. Hence, this the terms related to 
the coupling effects are ignored in this study. Using 
the expression of Eq. 7 for the bending displacement, 
the equations of the bending motion of the kth blade 
are derived as below (omitting the terms of coupling): 
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where i=1,2,3,…, etc. and 
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Since, parametric study is preferred for different 
purposes such as system design, it is beneficial to 
transform equations of motion into a dimensionless 
form. Hence, employing the variables of Eq. 15, the 
equation of motion is rewritten in a dimensionless 
form as shown in Eq. 16. 
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where i=1,2,3,…, etc. and 
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Now by assembling n (total number of blades) sets 

of equation of motion (Eq. 16) corresponding to n 
blades, the total equation can be written as Eq. 24. 
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For the modal analysis of the system, the matrix 

[θ] can be assumed as: 
 

   je                                                   (25) 

 
Here, ω is the dimensionless natural frequency of 

the system. Employing Eq. 25, Eq. 24 can be written 
as Eq. 26 which is used for modal analysis of the multi 
blade system. 
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3. NUMERICAL RESULTS 
 

A code was developed in MATLAB software to 
determine the natural frequencies of the systems. In 
order to evaluate the code, natural frequencies of a 
single rotating beam with uniform section (α=β=0) 
were determined and compared with those reported in 
Ref [10]. The natural frequency was determined in the 
case of δ=1 for different values of γ. The obtained 
natural frequencies and the corresponding values 
from the literature are in good agreement as presented 
in Table 1. 
 
 
 

Table 1. Comparison of the first natural frequencies 
(results of MATLAB code and those of literature) in the 

bending vibration 

γ Present Cheng and Yan (2006) 
1 3.889 3.889 
2 4.834 4.834 
3 6.082 6.084 
4 7.476 7.481 
5 8.942 8.951 

 
In this study, the natural frequencies of a multi 

blade system shown in Fig. 3 have been determined. 
This system contains 4 packets and each packet 
consists of 6 blades (total number of 24 blades). The 
first five bending mode functions of a cantilever beam 
are considered as the assumed modes of the blades. It 
is worth mentioning that, in the assembly step, the 
term related to the stiffness of the shroud should not 
be considered for the blades at the ends of the pockets, 
as there is not any shroud connection between 
packets. Fig. 4 shows the dimensionless natural 
frequencies which are plotted versus the 
dimensionless angular speed. The values of 
dimensionless parameters employed for the 
numerical analysis are given in Table 2. 

 
Figure 3. Configuration of the multi blade system 

 
Table 2. The values of dimensionless parameters 

employed in the numerical analysis 

α β δ βD βS ξD ξS 
0.3 0.3 4 2e6 10 0.1 1 

 
It is worth mentioning that ξD and ξS are the 

dimensionless terms related to the positions where the 
beam is connected to the disk and the shroud. βD and 
βS are the dimensionless stiffness values of disk and 
the shroud. δ is the ratio of the disk radius to the blade 
length (Eq. 22). 
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Figure 4. Dimensionless natural frequencies of the 
perfect multi blade system versus the dimensionless 

angular speed (γ) 
 

In order to investigate the effect of an inconsistent 
blade on the natural frequency of the system, the 
dimensionless material properties of the one of the 
blades were changed. In case of defects such as crack, 
void and etc. in a blade, mechanical properties as well 
as Young’s modulus would be significantly reduced. 
Addition to that, thermal shock would be other 
phenomena, which affect material properties of the 
blades. According to these kinds of material property 
variations, it is assumed that the Young’s modulus of 
the inconsistent blade has been reduced to the 10% of 
the initiate value. Therefore, the values of βD and βS 
were considered to be 2e7 and 100, respectively 
(while these values were 2e6 and 10 for perfect 
blades). Different conditions are considered in terms 
of the position of inconsistent blade in the system (1st, 
2nd and 3rd blade as shown in Fig. 3) and rotating 
speed of the system (γ=0, 5 and 10). It is worth 
mentioning that other positions for the inconsistent 
blade are similar to the considered positions due to 
symmetrical geometry. In Table 3, natural 
frequencies of the system for the mentioned 
conditions are presented.  

 
Table 3. Natural frequency of the system without 

inconsistency and the systems with one inconsistent blade 
in the position of 1st, 2nd and the 3rd blade (see Fig. 3) 

γ=0 
Mode Perfect 1st 2nd 3rd 

1 4.067 4.067 4.067 4.067 
2 4.685 4.685 4.685 4.685 
3 4.685 4.686 4.687 4.687 
4 4.696 4.696 4.696 4.697 
5 6.553 6.553 6.553 6.553 
6 6.553 6.553 6.553 6.553 
7 6.553 6.556 6.556 6.555 
8 6.556 7.087 6.836 6.585 

9 9.464 9.464 9.464 9.464 
10 9.464 9.464 9.464 9.464 
11 9.464 9.464 9.464 9.464 
12 9.464 10.339 9.464 10.048 
13 11.561 11.561 11.561 11.561 
14 11.561 11.561 11.561 11.561 
15 11.561 11.561 11.561 11.561 
16 11.561 12.322 11.841 11.993 
17 12.757 12.757 12.757 12.757 
18 12.757 12.757 12.757 12.757 
19 12.757 12.757 12.757 12.757 
20 12.757 13.249 13.146 12.890 
21 13.341 13.341 13.341 13.341 
22 13.341 13.341 13.341 13.341 
23 13.341 13.341 13.341 13.341 
24 13.341 15.324 15.874 15.875 
25 20.556 20.556 20.556 20.556 

 
γ=5 

Mode Perfect 1st 2nd 3rd 
1 13.505 13.505 13.505 13.505 
2 14.459 14.458 14.459 14.459 
3 14.459 14.462 14.462 14.462 
4 14.488 14.488 14.489 14.489 
5 15.156 15.156 15.156 15.156 
6 15.157 15.157 15.157 15.157 
7 15.157 15.163 15.163 15.162 
8 15.166 15.396 15.282 15.174 
9 16.706 16.706 16.706 16.706 

10 16.706 16.706 16.706 16.706 
11 16.706 16.706 16.706 16.706 
12 16.706 17.314 16.706 17.104 
13 18.316 18.316 18.316 18.316 
14 18.316 18.316 18.316 18.316 
15 18.316 18.316 18.316 18.316 
16 18.316 19.055 18.576 18.722 
17 19.531 19.531 19.531 19.531 
18 19.531 19.531 19.531 19.531 
19 19.531 19.531 19.531 19.531 
20 19.531 20.125 19.995 19.686 
21 20.243 20.243 20.243 20.243 
22 20.243 20.243 20.243 20.243 
23 20.243 20.243 20.243 20.243 
24 20.243 23.660 25.022 25.024 
25 35.992 35.992 35.992 35.992 

 
γ=10 

Mode Perfect 1st 2nd 3rd 
1 25.748 25.748 25.748 25.748 
2 27.469 27.466 27.468 27.469 
3 27.469 27.481 27.481 27.482 
4 27.579 27.578 27.580 27.582 
5 27.922 27.925 27.925 27.923 
6 27.932 27.931 27.931 27.931 
7 27.932 27.950 27.948 27.936 
8 27.958 28.071 28.010 27.960 
9 28.852 28.852 28.852 28.852 

10 28.853 28.853 28.853 28.853 
11 28.853 28.853 28.853 28.853 
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12 28.853 29.249 28.853 29.109 
13 29.957 29.957 29.957 29.957 
14 29.957 29.957 29.957 29.957 
15 29.957 29.958 29.958 29.958 
16 29.958 30.534 30.155 30.268 
17 30.933 30.933 30.933 30.933 
18 30.933 30.933 30.933 30.933 
19 30.933 30.933 30.933 30.933 
20 30.933 31.467 31.346 31.068 
21 31.579 31.579 31.579 31.579 
22 31.579 31.579 31.579 31.579 
23 31.579 31.579 31.579 31.579 
24 31.579 35.950 38.775 38.780 
25 62.115 62.115 62.115 62.115 

 
As observed in Table 3, natural frequencies of the 

first 7 mode are not changed, which indicates that any 
inconsistency in one of the blades of a multi blade 
system will not affect system dynamic characteristics. 
Variation of the natural frequencies of the system due 
to inconsistent blade only can be observed for the 8th, 
12th, 16th, 20th and 24th modes of the system. In order 
to have a better presentation of the variation in natural 
frequencies, the values corresponding to the 8th, 12th, 
16th and 24th modes are presented in Table 4.  
 
 

Table 4. Variation of the natural frequencies of the 
system due to inconsistent blades for the 8th, 12th, 16th and 
24th mode (IBN: Inconsistent Blade Number, NF: Natural 

Frequency, NFP: Natural Frequency of Perfect system, 
PV: Percentage of Variation in natural frequency due to 

inconsistent blade) 

 γ=0 
IBN 1st 2nd 3rd 

8th mode 

NF 7.087 6.836 6.585 

NFP 6.556 6.556 6.556 

PV 7.482 4.092 0.436 

12th mode 

NF 10.339 9.464 10.048 

NFP 9.464 9.464 9.464 

PV 9.247 0 6.174 

16th mode 

NF 12.322 11.841 11.993 

NFP 11.561 11.561 11.561 

PV 6.575 2.421 3.731 

20th mode 

NF 13.249 13.146 12.89 

NFP 12.757 12.757 12.757 

PV 3.711 2.956 1.034 

24th mode 

NF 15.324 15.874 15.875 

NFP 13.341 13.341 13.341 

PV 14.864 18.989 18.995 
 

 

 

 γ=5 
IBN 1st 2nd 3rd 

8th mode 

NF 15.396 15.282 15.174 

NFP 15.166 15.166 15.166 

PV 1.492 0.762 0.052 

12th mode 

NF 17.314 16.706 17.104 

NFP 16.706 16.706 16.706 

PV 3.64 0 2.377 

16th mode 

NF 19.055 18.576 18.722 

NFP 18.316 18.316 18.316 

PV 4.036 1.42 2.219 

20th mode 

NF 20.125 19.995 19.686 

NFP 19.531 19.531 19.531 

PV 2.949 2.319 0.785 

24th mode 

NF 23.66 25.022 25.024 

NFP 20.243 20.243 20.243 

PV 16.876 23.606 23.616 
 

 γ=10 
IBN 1st 2nd 3rd 

8th mode 

NF 28.071 28.01 27.96 

NFP 27.958 27.958 27.958 

PV 0.404 0.185 0.008 

12th mode 

NF 29.249 28.853 29.109 

NFP 28.853 28.853 28.853 

PV 1.373 0 0.887 

16th mode 

NF 30.534 30.155 30.268 

NFP 29.958 29.958 29.958 

PV 1.923 0.657 1.037 

20th mode 

NF 31.467 31.346 31.068 

NFP 30.933 30.933 30.933 

PV 1.696 1.318 0.434 

24th mode 

NF 35.95 38.775 38.78 

NFP 31.579 31.579 31.579 

PV 13.843 22.788 22.804 
 

As illustrated in Table 4, the highest values of 
variation in natural frequencies are observed for 24th 
mode. Among the other four modes, the 12th and 16th 
modes demonstrate higher values of variation. The 
natural frequencies of the system mostly are increased 
due to the inconsistent blades. As observed in Table 
4, in case of the 1st blade as the inconsistent one, the 
values of variations are more than other cases, except 
for the 24th mode. However, for the 24th mode, the 
values of variation become significant, in case of 
placing inconsistent blade in the position of 2nd or 3rd 
blade. Comparison of the values of variation for 
different angular speeds of the system, lead to the fact 
that higher variation values in the natural frequencies 
of the system are observed for the lower angular 
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speed (γ=0), except for the 24th mode in which lower 
variation values are related to the lower angular 
speed. For better presentation of the way of variation, 
the natural frequencies of the systems with the 
inconsistency in the position of 1st, 2nd and 3rd blades 
are plotted versus system angular speeds in Fig. 5, 
Fig. 6 and Fig. 7. 
 

 
Figure 5. Dimensionless natural frequencies of a multi 

blade system without any inconsistency (perfect system) 
and a system containing one different blade in material 
parameters (βD =2e7 and βS = 100) in the position of the 

1st blade (see Fig.3) versus the dimensionless angular 
speed (γ) 

 
Figure 6. Dimensionless natural frequencies of a multi 

blade system without any inconsistency (perfect system) 
and a system containing one different blade in material 
parameters (βD =2e7 and βS = 100) in the position of the 
2nd blade (see Fig.3) versus the dimensionless angular 

speed (γ) 

 

Figure 7. Dimensionless natural frequencies of a multi 
blade system without any inconsistency (perfect system) 
and a system containing one different blade in material 
parameters (βD =2e7 and βS = 100) in the position of the 

3rd blade (see Fig.3) versus the dimensionless angular 
speed (γ) 

 
As shown in Fig. 5, there is a significant jump in 

the natural frequency of the 24th mode. This jump in 
natural frequencies of the 24th mode seems to be more 
for the higher values of angular speed. On the other 
hand, for the other four modes, the rate of variation in 
natural frequencies due to the inconsistency is 
decreased while the angular speed is increased. As 
same as observed in Fig. 5, the highest values of 
natural frequency jump are observed for the 24th 
mode in Fig. 6 which relates to the case of 2nd blade 
as the inconsistent blade. In this case (Fig. 6), the 
natural frequencies of the 12th mode are not affected 
due to inconsistency which can be attributed to the 
mode shapes of the blades. Similar to those of Fig. 5 
and Fig. 6, again 24th mode shows the highest jump in 
natural frequency curves of Fig. 7 which relates to the 
system with inconsistency in the 3rd blade. This time, 
the 8th mode is not affected due to the inconsistency 
which again can be attributed to the mode shapes. In 
order to investigate the effect of mode shape on the 
way of variation in natural frequencies, the 8th and 
12th mode shapes for consistent multi blade system 
(considering the first assumed bending mode as the 
mode of deflection) are plotted in Fig. 8 and Fig. 9. 

The 3rd blade of the system has very low 
displacement in the 8th mode shape plotted in Fig. 8. 
This is the reason why the 8th mode rarely affected by 
the inconsistency in the position of 3rd blade. 
Additionally, as shown in Fig. 9, since 2nd blade in 
12th mode shape is not displaced, this mode is not 
affected by the inconsistency of the system in the 
position of 2nd blade. These information about the 
way of variation in system natural frequencies due to 
inconsistency  can  be  employed  to  avoid  the  multi 
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Figure 8. The 8th mode shape of the consistent multi 

blade system  

 
Figure 9. The 12th mode shape of the consistent multi 

blade system  
 

blade systems to work in the frequencies close to their 
natural frequencies. This can be applicable, especially 
for the systems, in which, there is a high possibility to 
have an inconsistent blade. In the other word, natural 
frequencies of the multi blade systems, which have 
the possibility of system inconsistency, should be 
counted as an important issue in the dynamic 
behavior of the system. 
 
4. CONCLUSIONS 
 

In this study, the effect of the existence of an 
inconsistent blade on the natural frequencies of a 
rotating multi blade system was investigated. For this 
purpose, the natural frequencies of a perfect blade 
system and a system containing one different blade in 
material property have been compared for a domain 
of dimensionless angular speed. Based on the 
comparison results, although the majority of the 
natural frequencies (including first seven modes) did 
not show significant variation, however, some of the 

natural frequencies (here, 8th, 12th, 16th, 20th and 24th 
modes) were affected (natural frequency of the 
system is increased) in case of an inconsistent blade 
in different possible positions. Increasing in natural 
frequency was more significant for the 25th mode. The 
obtained information about the way of variation in 
system natural frequencies due to inconsistency can 
be employed to keep the multi blade systems working 
frequencies away from the system natural 
frequencies, especially for the systems, in which, 
there is a high possibility to have an inconsistent 
blade. 
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