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In the present study, the thermal conductivity of CuO/EG–water nanofluid in different solid concentrations and
temperatures has been experimentally investigated. Using a two-step method, the nanofluid has been produced
in different solid concentrations ranging from 0.1% to 2% and temperatures up to 50 °C. The thermal conductivity
of the nanofluid has been experimentally measured using the KD2 Pro instrument. Based on the experimental
data, new correlations for predicting the thermal conductivity of CuO/EG–water at different temperatures have
been proposed. The results show that with the increase of the solid concentration, the thermal conductivity of
the nanofluid increases. Furthermore, the thermal conductivity of the nanofluid increaseswhile the temperature
increases. This increase is by far more noticeable in higher solid concentrations compared with lower solid
volume fraction. This means that it is the presence of nanoparticles in the base fluid that causes the increase of
the effect of temperature on the thermal conductivity.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The extraordinary features and great potential of the nanofluids in
heat transfer have made them more attractive for researchers. Adding
the nanoparticles to base fluids such as water, ethylene glycol, and
propylene glycol have a significant effect on the thermal conductivity
enhancement. On these grounds, a number of studies have been done
by different researchers [1–6].

Alipour et al. [7] conducted an investigation on the effect of interfacial
nanolayers on the thermal conductivity of nanofluids. They proposed a
new correlation for thermal conductivity and compared it with other
proposed correlations. Hemmat et al. [8] conducted an experimental
investigation on the thermal conductivity of Al2O3/water nanofluid.
They measured the thermal conductivity of the nanofluid in different
solid volume fractions up to 5% at various temperatures (ranging from
26 to 55 °C) and proposed a new correlation to predict the thermal
conductivity as a function of solid concentration and temperature.
Saeedinia et al. [9] experimentally studied the thermal and rheological
behavior of CuO–Oil nanofluid. In another experimental study, the
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thermal conductivity of MgO/EG nanofluid with different sizes of parti-
cles (20, 40, 50, and 60 nm) was measured by Hemmat Esfe et al. [10].
They conducted the study at various temperatures (from 25 to 55 °C)
and in different solid concentrations up to 5%. Using neural network,
they presented a correlation for thermal conductivity improvement in
terms of temperature, solid volume fraction, and size of the particle
based on the measured data. Their results showed that the neural
network is one of the most powerful tools for predicting the thermal
conductivity of nanofluids. Using one-step physical method, Lee et al.
[11] investigated the enhancement of the thermal conductivity of
ZnO–EG nanofluid. Their results showed that this nanofluid shows the
temperature-dependency at higher solid volume fractions. The effect of
particle size on the thermal conductivity of TiO2 in water and polyvinyl
alcohol has been experimentally investigated by Nisha and Philip [12].
Hemmat Esfe et al. [13] conducted an experimental investigation on
the thermal properties of MWCNT-water nanofluid. They studied the
thermal conductivity of the nanofluid in different solid volume fractions
and temperatures. Their results showed that the thermal conductivity
increases when temperature increases. Moreover, they observed that in
the low concentrations, temperature has no considerable impact on
the thermal conductivity while it is more considerable in higher solid
concentrations. The effect of the solid volume fraction of MWCNT
nanoparticles and temperature (28–60 °C) on the effective thermal
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Fig. 2. Relative thermal conductivity of nanofluid versus temperature at different
concentrations.
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conductivity has been experimentally studied by Indhuja et al. [14]. They
declared that there is an inextricable connection between temperature
and thermal conductivity, especially in the temperatures above 45 °C.
Mariano et al. [15] conducted an experimental study on the thermal
behavior of non-Newtonian ethylene glycol-based nanofluids. They
measured the thermal conductivity of the nanofluids in different
temperatures (283.15, 303.15, and 323.15 K) and solid concentrations
up to 25%. They observed that the thermal conductivity increases with
the increase of the solid volume fraction. Teng et al. [16] conducted an
experimental study on the effect of the particle size on the thermal
conductivity of alumina/water nanofluid. They investigated the effect
of temperature, particle size, and solid volume fraction on the relative
thermal conductivity of the nanofluid. Recently, Hemmat Esfe et al. [17,
18] experimentally investigated the thermal conductivity of Mg(OH)2–
EG and MgO–water nanofluid at different concentrations and tempera-
tures. They conclude that with the increase of temperature and solid
volume fraction, thermal conductivity of nanofluid increases. Also, lately
some studies on modeling of thermal conductivity by ANN [19,20]
method have been carried out.

In the present study, the thermal conductivity of CuO/EG–water
(40%–60%) has been experimentally investigated. The nanofluid in
different solid concentrations and temperatures has been studied and
several new correlations for predicting the thermal conductivity of
the nanofluid have been proposed. Based on the authors' knowledge,
there is no comprehensive and thorough investigation to predict the
thermal conductivity of the nanofluid.

2. Thermal conductivity measurement

In the present study, thermal conductivity of the studied nanofluid,
in different solid volume fractions and temperatures, was measured
using a KD2 Pro instrument manufactured by Decagon Devices, USA.
The KD2 Pro measures thermal conductivity based on the transient
hot wire technique. In this method, a KS-1 sensor is used for measuring
the thermal conductivity. It is 60mm long and 1.27mm in diameter and
is made from stainless steel. The KD2 Pro instrument has an accuracy of
±5%. In order to stabilize the temperature, a hot water bath is used.
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Fig. 1. XRD pattern of C
Furthermore, for measuring the temperature, a thermometer is used
which has an accuracy of 0.1 °C.

3. Results and discussion

In the present study, the thermal conductivity of CuO/EG–water
(40%–60%) in different solid concentrations (up to 2%) and tempera-
tures (up to 50 °C) has been evaluated. The figures of relative thermal
conductivity as well as the diagrams of the enhancement's percentage
have been presented in order to make better understanding of the
nanofluid's behavior in such solid volume fractions and temperatures
(Fig. 1).

Fig. 2 shows the relative thermal conductivity of CuO/EG–water
(40%–60%) against temperature in all the studied solid concentrations.
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Table 2
The enhancement of the relative thermal conductivity of the nanofluid in different solid
concentrations at the same temperature with respect to solid volume fraction of 0.1%.

φ (%) 20 25 30 35 40 45 50

0.004 4.48 5.37 6.43 6.94 5.05 6.23 5.22
0.006 5.70 7.30 8.33 8.36 5.97 7.60 7.91
0.008 8.14 8.99 10.47 11.67 9.41 10.10 11.49
0.01 10.09 11.16 13.08 13.33 11.47 14.21 15.07
0.015 12.05 14.29 16.17 17.11 14.92 18.08 20.44
0.02 14.24 17.67 21.40 23.97 24.09 24.69 26.71

Table 1
The percentage of enhancement in relative thermal conductivity of the nanofluids in
different temperatures with respect to the thermal conductivity of the fluid in different
temperatures.

25 30 35 40 45 50

0.1% 0.47 0.55 0.62 2.78 2.75 4.13
0.2% 1.16 1.09 2.00 3.57 3.98 5.77
0.4% 1.35 1.71 2.58 3.43 4.48 4.88
0.6% 2.01 2.34 2.75 3.12 4.61 6.32
0.8% 1.28 2.02 3.50 4.07 4.63 7.37
1% 1.46 2.59 3.18 4.15 6.60 8.85
1.5% 2.51 3.57 4.77 5.49 8.30 11.95
2% 3.50 6.18 8.79 11.73 12.16 15.51
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As it can be seen, while temperature increases, the relative thermal
conductivity increases too. This increase in higher solid concentrations
is by far more noticeable. The primary reason that the thermal conduc-
tivity increases with temperature can be explained by the increase in
interactions among the particles and Brownian motion. On the other
hand, the number of suspended nanoparticles increases when the
solid volume fraction increases. The increase in particles apart from
increase in interactions among the particles can cause the creation of
chains of particles in fluid and ease the thermal conductivity.

Regarding the importance of the effect of temperature on thermal
behavior of nanofluids, the percentage of enhancement in relative ther-
mal conductivity of the nanofluid in various temperatures against the
thermal conductivity of the fluid in the temperature of 20 °C at the
same solid concentrations has been presented in Table 1. As can be
seen, the largest effect occurs when the temperature is 50 °C, there is
a change of 15.5% in the maximum solid concentrations of 2%. This
means that in the solid volume fraction of 2%, when the temperature
increases from 20 to 50 °C, the relative thermal conductivity increases
by 15.5%.

Fig. 3 shows the relative thermal conductivity of the nanofluid
against solid volume fractions of the nanoparticles at different temper-
atures. As is mentioned, the relative thermal conductivity increases
while the solid concentration increases, and this increase is more
tangible in higher temperatures than lower temperatures.

In order to investigate the effect of solid volume fraction of the
nanoparticles thoroughly, the percentage of enhancement of the
relative thermal conductivity of the nanofluid at different solid concen-
trations and at the same temperatures with respect to the solid volume
fraction of 0.1% has been presented in Table. 2. As can be seen, with the
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Fig. 3. Relative thermal conductivity of nanofluid with respect to solid volume fraction at
different temperatures.
increase of solid concentration, the relative thermal conductivity with
respect to the thermal conductivity of the nanofluid, with solid
concentration of 0.1%, increases. This increase in the solid concentration
of 2% in the temperatures of 20 and 50 °C is 14.24% and 26.71%, respec-
tively. Furthermore, at the temperature of 50 °C, the percentage of
enhancement increases from 5.22% in solid concentrations of 0.4%, to
26.71% in solid concentration of 2%.

Regarding the aforementioned analysis and in order to present the
data completely in this study, Fig. 4 has been presented. Fig. 4 shows
the percentage of enhancement in thermal conductivity of CuO/Eg–
water (40%–60%) nanofluid with respect to water against temperature
at different solid concentrations. As can be seen, when the temperature
increases to 50 °C and solid concentrations of 2%, the thermal conductiv-
ity of the nanofluid at the temperatures of 20 and 50 °C increases by
15.84% and 36.97%, respectively, in regard to the water.
4. Proposed correlation

Regarding the importance of predicting the thermal conductivity of
CuO/EG–water (40%–60%) nanofluid, several correlations have been
proposed based on the experimental data.

Due to the necessity of presenting the correlations with acceptable
accuracy, the correlations have been proposed separately at different
temperatures. This way, these correlations can be more accurate and
they can be used to predict thermal conductivity in various applications
as easy as possible.

Fig. 5 presents the data related to curve fitting on the experimental
data in various temperatures.

In order to develop correlations that predict thermal conductivity of
nanofluids, some accurate correlations based on experimentalmeasure-
ments have been proposed in Table 3.
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Fig. 4. Thermal conductivity enhancement percentage versus temperature at different
solid volume fractions.
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Fig. 5. Curve fitting on experimental data at different temperatures.
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Fig. 5 (continued).

Table 3
Proposed correlations to predict thermal conductivity at different temperatures.

Temperature Proposed correlation

@ T = 20 kn f

kb f
¼ 1þ 16:94 φð Þ−755:2 φ2

� �þ 15200 φ3
� �

@ T = 25 kn f

kb f
¼ 1þ 22:41 φð Þ−1249 φ2

� �þ 31410 φ3
� �

@ T = 30 kn f

kb f
¼ 1þ 22:95 φð Þ−1236 φ2

� �þ 33120 φ3
� �

@ T = 35 kn f

kb f
¼ 1þ 26:88 φð Þ−1705 φ2

� �þ 50560 φ3
� �

@ T = 40 kn f

kb f
¼ 1þ 32:94 φð Þ−2566 φ2

� �þ 82850 φ3
� �

@ T = 45 kn f

kb f
¼ 1þ 33:02 φð Þ−2102 φ2

� �þ 60190 φ3
� �

@ T = 50 kn f

kb f
¼ 1þ 37:13 φð Þ−2219 φ2

� �þ 60760 φ3
� �

@ T = 55 kn f

kb f
¼ 1þ 43:21 φð Þ−2718 φ2

� �þ 72360 φ3
� �

@ T = 60 kn f

kb f
¼ 1þ 49:25 φð Þ−3287 φ2

� �þ 87740 φ3
� �
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5. Conclusion

In the present study, the thermal conductivity of CuO/EG–water
(40%–60%) in different solid volume fractions and temperatures has
been experimentally investigated. The results have been presented in
the form of various figures and tables. The results of the present study
show that when the temperature and solid concentration increases,
the thermal conductivity of the nanofluid increases. On the other
hand, the effect of the temperature in higher solid concentrations is
more noticeable comparedwith those of the lower solid concentrations.
In the rest of the study and based on the experimental data, several
correlations have been proposed in order to predict the thermal con-
ductivity of the nanofluid. In order to keep the simplicity and accuracy
of the proposed correlations at the same time, these correlations have
been proposed separately in different temperatures. The extension of
this paper and our previous work [21–23] affords engineers a good
option for nanofluid in applications where improved heat transfer or
efficient heat dissipation is required.
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