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In the present study, the effects of solid volume fraction and temperature on the thermal conductivity of MgO/
water–EG (60:40) nanofluid are discussed. Samples of nanofluid are provided by two step method at different
solid concentrations, including 0.1%, 0.2%, 0.5%, 0.75%, 1%, 1.5%, 2% and 3%. The experiments are performed for dif-
ferent temperatures ranging from 20 to 50 °C, using KD2 pro thermal analyzer which employed transient hot
wire to measure thermal conductivity. The finding shows that thermal conductivity of nanofluid increases
with increasing solid volume fraction or temperature. Based on the experimental data, new correlation for
modeling the thermal conductivity of MgO/water–EG (60:40) for different solid volume fractions and tempera-
tures was proposed.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer by using of fluids plays a vital role in many industrial
applications including heat exchangers, crystal growth, electronic
board cooling and so on [1–4]. Numerous techniques have been applied
to improve heat transfer in these applications; whereas the efficiency of
pure fluids, in the heat transfer processes, is low. A method to enhance
the heat transfer is employing nanofluids [5]. Nanofluids are blends of
solid nanoparticles suspended in conventional liquids which have
higher thermal conductivity compared to pure liquids [6, 7]. Existing ex-
perimental studies on thermal conductivity enhancement of Al2O3, CuO,
Fe3O4, ZnO and MgO nanoparticles in water showed that the thermal
conductivity of nanofluid is function of the size of nanoparticles, solid
concentration, temperature, and thermo-physical properties of nano-
particles and base fluid [6–13].

As we know, one of the essential applications of nanofluids is its use
in heat exchangers. Hence, in thewinter, mixture of ethylene glycol and
water in various volumepercentages is usually used to reduce the freez-
ing point of water. In this regard, several studies were performed to in-
vestigate the thermophysical properties of nanofluids consisted of
nanoparticles, ethylene glycol and water [14–23]. In the mentioned
studies, water and ethylene glycol were mixed in different proportions
and the nanoparticles have been dispersed in it. These studies con-
firmed that adding nanoparticles to a mixture of water and ethylene
glycol can enhance the thermal conductivity of nanofluids.
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Recently, several equations have been theoretically achieved to pre-
dict the thermal conductivity of nanofluids but thesemodels have some
defects. For this reason, many researchers have tried to provide correla-
tions with high accuracy to predict the thermal conductivity of
nanofluids using experimental data. Here, a brief review of empirical
correlations for thermal conductivity of different nanofluids is conduct-
ed. An empirical correlation for the thermal conductivity enhancement
of Al2O3/deionized water nanofluids was reported by Chon et al. [24].
This correlation showed the role of temperature (ranging from 21 to
71 °C) and particle size (range of 11 nm to 150 nm) for nanofluid ther-
mal conductivity enhancement. Li and Peterson [25] experimentally
studied thermal conductivity of Al2O3/water with particle size of
36 nm over a volume fractions range of 2.0% to 10.0% in temperature
ranging from 27.5 °C to 34.7 °C. They proposed an empirical correlation
for thermal conductivity ratio of Al2O3/water. They also suggested a cor-
relation to predict the thermal conductivity enhancement of CuO/water
(29 nm) nanofluids for samementioned range of temperature and solid
volume fraction.

The thermal conductivity of TiO2/water nanofluid was experimen-
tally reported as a function of temperature and solid volume fractions
by Duangthongsuk and Wongwises [26]. Thermal conductivity of
MgO/EG nanofluids was measured in a temperature range of 15 °C to
35 °C for volume fractions up to 2.0%. They presented thermophysical
correlation for estimating of the thermal conductivity of TiO2/water
nanofluid with particle diameter of 21 nm. Teng et al. [27] presented
an experimental correlation to estimate the thermal conductivity ratio
of Al2O3/water nanofluids for various weight fractions, temperatures
and nanoparticles diameter. Hemmat Esfe et al. [28]measured the ther-
mal conductivity of COOH-functionalized multi walled carbon nano-
tubes/water was at different temperatures (25–55 °C) and solid
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Fig. 2. Variations of thermal conductivity of nanofluid for various temperatures and solid
volume fractions.
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volume fractions (0.05–1%). Using the measurements, they suggested a
correlation for estimating of the thermal conductivity ratio of COOH-
functionalized MWCNTs/water nanofluids.

Most research reports on the thermophysical properties of nanofluid
which use water, ethylene glycol and oil as base fluid. Literature survey
reveals that there are a few works on the thermal conductivity of the
nanoparticles dispersed in binary mixture of water and ethylene. On
the other hand, very few papers are available on magnesium oxide
based nanofluids, which has good chemical and physical stability,
even though it is not widely investigated. Therefore in the current re-
search, thermal conductivity of MgO/EG–water (40–60%) is measured
experimentally. Furthermore, due to lack of model to estimate the ther-
mal conductivity of this nanofluid, some new correlations in terms of
temperature and solid volume fraction have been suggested based on
experimental data.

2. Experiment

2.1. Preparation of nanofluid

In this work, the nanofluids at volume concentrations of 0.1%, 0.2%,
0.5%, 0.75%, 1%, 1.5%, 2% and 3% are prepared with two step method
by dispersing MgO nanoparticles in the mixture of DI water and EG as
the base fluid. Depending on the volume fraction, specified amount of
MgO nanoparticle with an average diameter of 40 nm is dispersed in
mixture of EG and water and after that, the mixture is well stirred.
The mixture is stirred for 60 to 80 min, and then the suspension is
inserted inside an ultrasonic homogenizer (Topsonic, 400 W, Iran) for
4 h to break down the agglomeration of particles. After 12 h, no sedi-
mentation was observed in any sample of nanofluids with naked eyes.
Fig. 1 illustrates the TEM image of nanoparticle.

2.2. Measurement of thermal conductivity

A KD2 Pro device (Decagon Devices, USA) has been utilized to mea-
sure the thermal conductivity of nanofluid. In this device, the transient
hot-wire method is employed. The KS-1 sensor with 60 mm long and
1.27mmdiametermade of stainless steel is used for thermal conductiv-
ity measurement. This sensor was interpolated into a vessel filled with
nanofluid located in a stable temperature bath. The sensor operates as
a line heat source. Thermal conductivity was characterized by measur-
ing of fluid temperature during cooling and heating phases. By compar-
ing the measured values with available thermal conductivities values
forwater, it was found that the differenceswere less than 1% in the tem-
perature range of 25–50 °C. All the measurements of the thermal
Fig. 1. Transmission electron microscopy (TEM) image of MgO nanoparticles.
conductivity were repeated at least three times to make certain the ac-
curacy of measurements.
3. Results and discussion

At the present study, the variations of effective thermal conductivity
of MgO/water–EG (60:40) with temperature and particle concentration
are studied experimentally. In the next step, to estimate thermal con-
ductivity of above mentioned nanofluid, new correlations have been
proposed by using regression at different solid volume fractions and
temperatures.

The variations of thermal conductivity of MgO/water–EG (60:40)
with various temperatures are depicted in Fig. 2 for various solid vol-
ume fractions. As shown in Fig. 2, in all considered solid volume frac-
tions, thermal conductivity of nanofluid increases with increasing
temperature. The variations of thermal conductivity with temperature
are more tangible at higher concentration. On the contrast, in low
solid volume fraction, the temperature doesn't play an important role
on the variation of thermal conductivity.
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Fig. 3. Enhancement percentage of thermal conductivity with respect to temperature.
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Fig. 4. Comparison between experimental data and correlation outputs.
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Thermal conductivity enhancement of MgO/water–EG (60:40)
nanofluid for various temperatures and solid volume fractions is plotted
in Fig. 3. It is clear in Fig. 3 that thermal conductivity enhancement
strongly depends on the solid volume fraction. The temperature has lit-
tle effect on enhancement percentage at low solid volume fraction. At
solid volume fraction higher than 1%, the effect of temperature on
enhancement percentage is tangible and visible. Therefore, it can be
concluded that the maximum values of thermal conductivity and
enhancement percentage have been measured at the highest tempera-
ture and solid concentration.

The thermal conductivity of MgO/water–EG (60:40) is varied with
temperature and solid concentration. Therefore, to estimate the thermal
conductivity of MgO/water–EG (60:40) nanofluid, a new accurate
correlation has been derived as follows.

knf ¼ 0:4þ 0:0332φþ 0:00101T þ 0:000619φT þ 0:0687φ3

þ0:0148φ5−0:00218φ6−0:0419φ4−0:0604φ2
ð1Þ

To ensure the accuracy of proposed correlation, experimental data
are compared with the values obtained from correlation, as shown in
Fig. 4. As can be observed in Fig. 4, all of points are on the bisector or
in its neighborhood. It indicates that there is an excellent agreement be-
tween experimental data and the results of the correlation.

4. Conclusion

Experimental investigation on thermal conductivity of MgO nano-
particles dispersed in binary mixture of water and ethylene glycol has
beenmeasured with temperature ranging from 20 to 50 °C for different
solid volume fractions up to 3%. According to the results, thermal con-
ductivity of nanofluid increases with an increase in solid concentration
or temperature. Furthermore, the rate of changes of thermal conductiv-
ity increases with increasing solid concentration. New correlation was
proposed for various solid volume fractions and temperatures for
MgO/water–EG (60:40) nanofluids. There is excellent agreement be-
tween them which shows the accuracy and capability of proposed
correlation.
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