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HIGHLIGHTS

e Develop LBM ability to simulate effects of buoyancy forces.
e Water/FMWCNT slip velocity through a micro flow.
e Simulation of specified heat flux along microchannel by LBM.

ARTICLE INFO ABSTRACT

Article history: Lattice Boltzmann method ability is improved to simulate the mixed convection of Water
Received 22 February 2018 / FMWCNT nanofluid inside a two dimensional microchannel. The influences of gravity on
Received in revised form 20 May 2018 hydrodynamic and thermal domains are studied while the microchannel walls are imposed
Available online xxxx by a constant thermal heat flux at three different case studies as no-gravity, Ri = 1 and
Keywords: Ri = 10. The flow Reynolds number is chosen as one and the liquid micro flow conditions
Lattice Boltzmann are involved by B = 0.005, B =0.01 and B = 0.02. The mass fraction of carbon nanotubes in
Micro flow water are selected as ¢ = 0, ¢ = 0.1% and ¢ = 0.2%. Double population distribution func-
Specified heat flux tions of “f” and “g” are used in lattice Boltzmann method. To the best of author’s knowledge,
Carbon nanotubes there is no article concerned the way of heat flux boundary condition simulation by LBM

considering the buoyancy forces effects on nanofluid slip velocity. Generate a rotational
cell due to gravity in entrance region which leads to observe the negative slip velocity
phenomenon can be presented as the several interesting achievements of this work.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Micro devices, which are concerned fluid flow and heat transfer in micro and nano scales level (MEMS & NEMS), have
different applications in nowadays industries which lead to report a large number of studies about them. It should be noticed
to different specifications of macro flows in comparison with micro and nano ones. The different level of a micro and a nano
flow is presented by dimensionless Kudsen number which is shown by Kn = A/Dy where A represents the molecular mean
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Nomenclature
B Dimensionless liquid slip coefficient
c Vector of velocity in microscopic scale
Cs Sound speed in lattice scale
Dy Microchannel hydraulic diameter
f Hydrodynamic distribution function
FMWCNT Functionalized multi-walled carbon nanotubes
g Thermal distribution function
H Microchannel height
L Microchannel length
Kn Knudsen number
q Imposed heat flux, Wm 2
Re Reynolds number
Ri = Gr/Re? Richardson number
T Dimensional temperature, k
u Vector of velocity in macroscopic scale, ms~!
(Uv) Dimensionless velocities in macroscopic scale
Us Dimensionless slip velocity
(XY) Coordinates in dimensionless forms
Greek symbols
0=T/T Dimensionless temperature in macroscopic scale
¢ Mass fraction of carbon nanotubes

free pass [ 1-16]. For the state of Kn < 0.001, the flow field will be continues which means the classic Navier-Stokes equations
can be used; however these equations are able to simulate the fluid flow at slip flow regime (0.001 < Kn < 0.1) considering
the slip velocity and temperature jump boundary conditions along the solid walls. The transient and free molecular regimes
are also achieved at higher values of Knudsen number as 0.1 < Kn < 10 and Kn > 10 which only the particle base methods
must be applied [17-27].

Various types of particle base methods have been introduced by now; among them three approaches of Direct Simulation
of Monte Carlo, Molecular Dynamic and Lattice Boltzmann method (LBM) have been found more suitable at different aspects
like accuracy and convergence. LBM, MD and DSMC can be used in all flow regimes; however using MD and DSMC will be
much more time consuming at macro scales due to working with interactions between the molecules. A lot of works can
be addressed using these approaches in micro and nano flows [28-43]. LBM uses a parallel algorithm with less complex
formulation; it also shows suitable accuracy and is appropriate for the simulation of multi-phase flows. Moreover the
incompressible Navier-Stokes equations can be derived from Boltzmann equation by using BGK model. In general LBM is a
relatively new method to simulate a gas flow according to the collision and propagation of the fictive particles on the lattice
points at each time step. The collision operator is also chosen in a way to satisfy the conservative laws in LBM-BGK model.
LBM works only with density—-momentum distribution function of “f” for the hydrodynamic domain in the lattice scale; then
all other physical parameters like macroscopic velocity and density are estimated from it. This fact makes LBM easier than
the well-known CFD methods [44-58].

Double population distribution function was developed to cover the both hydrodynamic and thermal fields in LBM. In this
method, another distribution function of “g” (internal energy distribution function) was introduced. “g” could be illustrated
based on “f’ and represented the internal energy and temperature. This type of LBM was shown by TLBM and many works
corresponded in this way at macro and micro scales [59-72].

Usual fluids like water and oils have low values of thermal conductivity which imply the conduction heat transfer
mechanism can be neglected through them. Adding a little measured metal or non-metal nanoparticles like Al, Cu, Ag or Al,03
to the base fluid, would increase the mixture conduction coefficient; so that both conduction and convection heat transfer
mechanisms will have noticeable rolls. This mixture was called nanofluid and various types of solid nanoparticles and base
fluids have been examined in this way by now. Many works can be referred to generate different kinds of nanofluids or
using them at different conditions and geometries. However because of extraordinary properties of Carbon nanotubes (CNT)
especially their large thermal conductivity, much attention have been paid to use CNT to generate the suitable nanofluid [73-
98]. Hence it is claimed that double population distribution functions approach of LBM has not been applied to simulate the
effects of gravity on slip velocity and temperature domain of a nanofluid in a micro flow; however present work intends to
improve LBM performance in such mentioned cases for the first time.
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Fig. 1. The schematic of the microchannel affected by constant heat flux.
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Fig. 2. The lattice of D;Qo.

2. Problem statement

Mixed convection of nanofluid, composed of water/FMWCNT (functionalized multi walled carbon nanotubes), in a long
microchannel (L/H = 10) is simulated using TLBM-BGK for the first time as its sidewalls are affected by a heat flux of ;. The
solution process is performed in dimensionless form. Hence there is no need to know the value of constant heat flux based
on the way to define the dimensionless parameters. The influences of buoyancy forces through a nanofluid micro flow has
been ignored in the most previous articles specially by using LBM. So present work will try to vanish this lack of research,
besides increase LBM ability to develop its domain performance.

Using nanofluid composed of carbon nanotubes (CNT) dispersed in water through a microchannel, was reported by
Nikkhah et al. [33] and also the influences of buoyancy forces of the air flow at the micro scales level were presented in
Ref. [8]; these both articles would represent the physical possibility of the supposed present problem.

As shown in Fig. 1, the temperature of inlet cold nanofluid (T;) will increase through the microchannel due to heat
exchange with hot walls. Effects of buoyancy forces on slip velocity and temperature domain at different values of mass
fraction of carbon nanotubes (¢ = 0, ¢ = 0.1%, ¢ = 0.2%) are investigated. To do this, three different case studies as
no-gravity, Ri = 1and Ri = 10 at Re =1 are considered while the dimensionless liquid slip coefficient changes from B =
0.005 to B=0.01 and B = 0.02. Double population distribution functions of “f’ and “g” in thermal lattice Boltzmann method
are used for the hydrodynamic and thermal domains.

3. Equations
3.1. Lattice Boltzmann Method
Boltzmann equation based on hydrodynamic and thermal distribution functions [24]:
of +(c-V)f = 2(f) (1)

g=0-5(c—wf (2)

g +(c-V)g =8(g) (3)
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Fig. 3. Fully developed velocity profiles from LBM against those of analytical solution by Kandlikar et al. [2] where ut = u/((—h?/2u)(dp/dx)) and y* =
y/h.
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Fig. 4. Averaged Nusselt number versus Santra et al. [34] for the nanofluid simulation.

Suitable collision operator according to BGK [18]:
-
If

20) =

Qe)=-2"5 —g=0s5c-wer-x (5)

Tg
The last term in right hand side of Eq. (5) illustrates the heat dissipation:

fZ =flc—u)-[du+(c- Vul (6)

Now the modified distribution functions ofE and g; can be written by using tr and 7z which show the hydrodynamic and
thermal relaxation times,

- d

fi=fi+ 5 (i f) (7)
¥

N dt Lt

gi=g+ E(gi —g)+ Efizi (8)
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Fig. 5. Streamlines and isotherms at B = 0.005 and ¢ = 0.1% for no-gravity (top), Ri = 1 (middle) and Ri = 10 (bottom).

[ and gf inEqgs. (7) and (8), represent the equilibrium distribution functions. Discretized microscopic velocity is achieved
by using D,Qq model (Fig. 2) which corresponds to a two dimensional geometry with 9 fictive nodes on each lattice,

Zi=(ci—u)-Du and Di=0+¢;-V (9)

¢i = (cos Slm,sinSlr)e, i=1,234

ci= Va2 (cos[$m + 3] sin [P + 5] e i=5.6.7.8 (10)
¢ =(0,0)
Collision and propagation at each time step of LBM are shown as follows,
~ ~ dt ~
(x+cdt, t +dt)—fi(x, t) = ———— | i — £ 1
fix 4+ ¢eidt, t +dt) — fi(x, t) rf+0.5dt[f’ f] (1n
dt Tgdt
(x4 cidt,t +dt) —g(xt) = ——— [g —gf] - —2—fZ 12
gi(x+c; +dt) — gi(x,t) % + 0.5dt [gz g,] ‘L’g+0.5dl'fll (12)
3c;i-u 9ci-uf 3w +v?)
ff=wip |:1 + 2 + o ) (13)
2.2
g5 = —wo [%—u ;;” ]
82,54 = w1pe [1.5 + 155 45060 1.5‘%”2] (14)

87 = @20 [3+ 6% + 456" 15000

pe = pRT and the weigh functions are chosen as wy = 4/9, wj = 1/9fori = 1,2,3,4and w; = 1/36fori = 5,6, 7, 8.
Finally the macroscopic variables are derived from “f” and “g” as follows,
P = Zlfl

~ 15
pu =Y cif; (15)
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Fig. 6. Streamlines and isotherms at B = 0.02 and ¢ = 0.1% for no-gravity (top), Ri = 1 (middle) and Ri = 10 (bottom).
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Fig. 7. The profiles of Slip velocity on the microchannel wall.

pe=Y2-5 Y5 (16)

6
7= DB (17)

T
T, = P—f; (18)

3.2. Boundary conditions

Unknown hydrodynamic inlet and outlet distribution functions are determined by using the non-equilibrium bounce
back model as follows,
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Fig. 8. U along the microchannel walls at B = 0.005.

fi=f+ %pinuin

f=F+ 2(f4 —f)+ Gpinuin

fo=To = 30a —F2) + £ pinttin

E :f 3Poutuout

)77 =J7 (f4 f2) - époutuout - %poutvout

735

)’?6 =fs+ 2(f4 _fZ) Gpoutuour + époutvout
Also for the unknown thermal inlet and outlet distribution functions as below [19-21]:

~

_ 6pe+3dt 3 fiZi—6(g0+82+83+84+86+87)

X [3.0 + 6y, + 3.0u%,] 5

- 243U +3u2,
~ 6pe+3dt 3, fiZi—6(8o+82 +83+84+86+87) 291
= x [1. 1.5y; Ous ]z
&1 2+ 3uj+3u2, [1.5 + 1.5uin + 3.0uj; I5
~ Bpe+3dt }; fiZi— 5(g0+gz+g3+g4+g6+g7 1
= X [3.0 4 6uj, + 3.0u; 15
&s 2+3u,,,+3u [ + buin + m] 36
~ _ 6(F+85+8s)—3dt Xi( )z —6peuour
& = X

[3.0 — 6.0ugy + 6.0V + 3.0u2, + 3.002,

~

[1.5 — 1.5ty + 3.0u2,, — 1500,

2—3uour+3u2,;

61 +85+8s)—3dt X4 S )Zifi—6 peuiou «

& =

[3.0 — 6.0ugy;

2—3uous+3u2,

6(81+85+85)—3dt Y X)Zifi—6 pettout «

2—3uour+3u5ut

out] 9

1
— 9.0Uout Vout 135

— 6.0V0ue + 3.0u2, + 3.002,, + 9.0Uoyc Vour 1 5

(22)
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Fig. 9. U; along the microchannel walls at B=0.01 and B = 0.02.

Unknown hydrodynamic distribution functions along the lower wall of microchannel to simulate the slip velocity:

fo=T (23a)

Foo=1frs+(1—rVs; (23b)
where r = 0.65 represents the accommodation factor. Through the same procedure, the unknown hydrodynamic
distribution functions along the upper wall of the microchannel:

fi=F (24a)

Fra=rfss+(1—r)fss (24b)

Egs.(23)and (24) are able to simulate the slip velocity along the microchannel walls; however the effects of slip coefficient
would be involved in Eq. (17).

3.3. Effects of gravity

Nanofluid mixed convection in a microchannel is investigated using Boussinesq approximation and based on the
buoyancy force of G = Bg(T — T). Hence Boltzmann equation included the external force of “F” is achieved [8]:

f_

I

of +-vf ==L 1 F (25)

wpn : . _ G(c—u)
F” according to the buoyancy force is presented as F = >5=—1°,

f(x+cdt,c, t+dt)—f(x,c, t)= —2‘17; (x+cdt,c,t +dt)—fé(x+ cdt, c, t +dt)]
(26)

—5e U e.0) = fx, e, )] + GF(x + cdt, ¢, t +dt) + SF(x,c. 1)
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~ ~ dt ~ ‘L'det
x+cdt,c,t+dt)—f(x,c,t) =——— [ f(x,c, t) — fE(x, C, t —_— 27
UChs +dn = I ) 7 + 0.5dt [f( =1 )] + 77 + 0.5dt 27)
Using equation of?} = fi + 0.5dt/7¢(fi — f7) — 0.5dtF leads to discretized form of Eq. (27):
~ ~ dt ~ dtry  3G(cy —v)
(X +cdt, t +dt) —fi(x, t) = ————— [fi — ¢ 4 ¢ 28
fix+e +dt) = filx. 1) 77 + 0.5dt [f' f’]+<rf+0.5dt c? / (28)
tf; + 0.5defe 0.5dtt; 3G(cy — v)
fi — fli i f 1}’2 fje (29)
77 + 0.5dt 77 4 0.5dt c
As a result and for the macroscopic variables with considering gravity:
p=>_F (30a)
i
u=(1/p) ) _ficx (30b)
i
v=(1/p) Y ficy + & (30¢)
= 1Y i iCiy 2
For the hydrodynamic boundary conditions at inlet while including buoyancy forces:
F+h+fs=pn—Goth+h+hatlfs+F) (31a)
fi+fs +fs = pinltin + (3 +f6 + f7) (31b)

- o~ ~ o~ o~ o~ dt
fs—fs=pmvint+(—H+fa—fo+F)— Ep,-,,c (31¢)
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Fig. 11. The profiles of U at different vertical cross sections of the microchannel.
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where
fo+fo+fa+2(fs +f6 +f7)
Pin = (32)
1 —uy
and
h-F=h-FK=h=hK-F+F (33)
From Eq. (13) beside Egs. (31b), (31c) and (34) leads to:
~ o~ 2
fi=fz+ §;0inuin (34)
~ ~ f—F 1 1 dt
fo=fo— j 5 j + g Pinthw = 5 PinVin + Z;Oinc
~ ~ f-FH 1 1 dt
=+ 4 2 2 + gpinuin + Epinvin - Z,Oinc (35)

Similarly for outlet and considering buoyance forces:
f3 ZFI - %poutuout
f7 ZFS - %(ﬁl —E) - épou[uout - %poutvou[ + %dtpoutc (36)
ﬁi :ﬁ; + %(ﬁl _172) - époutuout + %poutvout - %dtpoutc

Now it should be mentioned that slip velocity involving “G” is presented as below [8],

~ o~ o~ ~ o~ o~ d

Bt BT = puvu + Gt o +70) - S uG (37)
fo =fa— LdtpG
=1+ -1 (38)

fo=th+0 -1}
As it was said before, the lower and upper walls were affected by a constant heat flux as follows [17],

dt T
— E 5 _ = E 7 g 39
1 ( - Cigi — peu 2 - ¢i l) 7z + 0.5dt (39)

Using the last equation for the upper wall leads to:
7z + 0.5dt

D eyd =05dt Y cyfiZi+ penVi + E———qy (40)
i i T

At last the following model is demonstrated considering the heat flux boundary condition in LBM form:

~ ~ ~ i 7g+0.5d 41
I:(g2+g5+g6)_% ?:1%Ziﬂ_PeNVcl_ g+rg tq?y]x @

2 2 2
Wy [1.5+ 1.5% +4,5(C4‘C‘§u) _ 1'5ijsz ]

 w % ; 5 42
[(gz+g5+gs)—% f:,%ziﬂ—pe,v%—fg“’“%y]x (42)

g

c

Uy (c7.8 w)z U5,+Vw2
wr g [3 + 6t g g 5lrst) g 5t ]
Egs. (41) and (42) are presented according to GPTBC model which are the developed forms of Dorazio et al. heat flux
model [17]. Nusselt number equation based on the constant heat flux is written as:

quH DH (aT/ay)w
Nux = =
ATk Tw - Tbalk

(43)
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Table 1
Grid independency study for the slip velocity at the state of no-gravity and
¢ = 0.1%.
Mesh
350 x 35 400 x 40 450 x 45
B =0.02 0.124 0.125 0.125
B=0.01 0.072 0.073 0.073
Table 2

Thermo-physical properties of the FMWCNT/water nanofluid at different
values of nanoparticles mass fraction [32].

¢ % FMWCNT/water o (Kg/m3) K(W/mK) pu(Pas)

Pure water 996 0.62 7.65 x 1074
Pure water + 0.1% of FMWCNT 1003 0.66 7.81 x 1074
Pure water + 0.2% of FMWCNT 1006 0.71 7.90 x 1074

4. Grid independence study and validation

Three various nodes of 350x35, 400x40 and 450x45 were used in order to grid independency study and ignorable
differences were found between those of 400 x40 and 450 x45; so that the lattice grids of 400 x40 were selected for further
computations (see Table 1). Present work achievements by LBM versus analytical ones of Kandlikar et al. [2] are compared
in Fig. 3 corresponded to a plane flow between two parallel plates at width of 2h. The slip velocity is involved analytically as
ut = 1—y*? 4+ 8Kn in Ref. [2] where ut = u/((—h?/2x)(dp/dx)) and y* = y/h. Suitable agreements are seen between them.
Moreover the averaged Nusselt number values of water/Cu nanofluid flow and heat transfer through a hot wall channel are
compared with those of Santra et al. [34] in Fig. 4 and desirable accuracies are also observed in this figure.

5. Results

Nanofluid mixed convection in a microchannel is studied numerically by lattice Boltzmann method. Water as the base
fluid and FMWCNT as the nanoparticles are selected in a homogeneous condition (see Table 2). Microchannel side walls
are affected by a heat flux of q;. The temperature of inlet cold nanofluid increases through the microchannel due to heat
exchange with the hot walls. Effects of gravity on slip velocity and temperature domain at different values of mass fraction
as¢ = 0,¢ = 0.1% and ¢ = 0.2% are investigated for three different cases of no-gravity, Ri = 1and Ri = 10 at Re =1.
Dimensionless slip coefficient changes from B = 0.005 to B = 0.01 and B = 0.02.

Fig. 5 shows the streamlines and isotherms at B = 0.005 and ¢ = 0.1% for no-gravity, Ri = 1 and Ri = 10. The smooth
horizontal streamlines from the inlet left side and their corresponded symmetry isotherms due to the incoming heat flux
from the lower and upper walls, are well obvious for the case of no-gravity. However these trends are vanished at higher
amounts of Ri so that a strong long cell is generated at entrance region because of severe buoyancy forces at this area for
Ri = 10; moreover the symmetry forms of isotherms are lost at this case. The influences of more values of slip coefficient
on streamlines and isotherms are shown in Fig. 6 which is related to B = 0.02 and ¢ = 0.1%. There is no cell in this figure at
Ri = 10; however a noticeable downward flows are observed along the microchannel due to gravity effects. As a result, the
buoyancy forces at higher Ri, will be more important at lower values of slip coefficient.

The profiles of dimensionless slip velocity along the microchannel walls are presented in Fig. 7 for the state of no-gravity
which implies the absence of gravity effects. The largest amount of slip velocity is occurred at inlet while it will decrease
mildly with X to approach a constant value. Obviously, more B corresponds to more Us. The effects of higher Ri on U are
presented in Fig. 8 corresponded to B =0.005. A strong downward variation in U is observed along the upper wall at Ri = 10,
then mildly upward variation through it to reach its corresponded constant value. An interesting fact: generate a negative
slip velocity in the region of 0.2 < X < 6 along the upper wall and also observe a fluctuation in U along the lower wall which
are the results of the rotational cell (observed in previous figure). In the following, the effects of different amounts of slip
coefficient on slip velocity at various Richardson numbers are shown in Fig. 9 along the two horizontal microchannel walls.
Fig. 10 illustrates U profiles along the microchannel walls at Ri = 10 for B =0.005 and B = 0.02. Negative slip velocity along
the upper wall can also be seen in this figure which implies the fluid flow in opposite direction of X due to existence the
rotational cell. The effects of gravity along the lower wall are sensed by some fluctuations on U profiles through it.

Fig. 11 shows the profiles of U at different vertical cross sections of the microchannel for B = 0.005 at different Ri. The
parabolic symmetric profiles of U and also a little amount of slip velocity at Y = 0 and Y = 1 are observed at no-gravity state
which leads to have velocity a little less than 1.5 at Y = 0.5. Downward horizontal dimensionless velocity profiles, U = u/uj,
obviously can be seen in the plots corresponded to Ri = 1 which represent the influences of buoyancy forces; until that at
0.5 <Y < 1 for Ri = 10, the profiles of U are negative and their amplitude would increase with X.

The profiles of dimensionless temperature of & = T/T; at different vertical cross sections at the case of no-gravity and
Ri = 10 are presented in Fig. 12 for B = 0.005. The increase of nanofluid temperature affected by imposed heat flux from
the horizontal walls and also the significant effects of buoyancy forces on the thermal domain are completely obvious in this
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figure so that the symmetry forms of 6 profiles in no-gravity state, would be vanished at Ri = 10 plots. Eventually the local
Nusselt number values at the outlet of the microchannel lower wall (Nugyge; ) for different amounts of Ri, B and percent of ¢
are presented in Fig. 13. Higher mass fraction of FMWCNT corresponds to higher Nu; while more amounts of Nu are achieved
at lower Ri. Moreover it is seen that larger slip coefficient leads to less outlet Nusselt number. However in the absence of
buoyancy forces, the most value of Nu is achieved at B = 0.005.

Hence it is worth to say that the most heat transfer rate will be occurred at higher amounts of nanoparticles mass fraction
and in the lower amounts of slip coefficient besides in the absence or ignorable amounts of buoyancy forces; which means
the effects of gravity should be included at the small levels of the slip coefficient through the liquid micro flows.

6. Conclusion

Water/FMWCNT nanofluid mixed convection in a microchannel was studied numerically by lattice Boltzmann method,;
while the horizontal sidewalls were imposed by a constant heat flux. Double population distribution functions approach of
LBM, had not been applied to simulate the effects of gravity on slip velocity and temperature domain of nanofluid in a micro
flow. However present work improved the LBM performance in such mentioned cases for the first time.

Moreover the following points can be addressed in brief:

1- The smooth horizontal streamlines from the inlet left side and their corresponded symmetry isotherms due to the
incoming heat flux from the lower and upper walls, are well obvious for the case of no-gravity. However these trends are
vanished at higher amounts of Ri so that a strong long cell is generated at entrance region because of severe buoyancy forces
at this area for Ri = 10; moreover the symmetry forms of isotherms are lost at this case. As a result, the buoyancy forces at
higher Ri, will be more important at lower values of slip coefficient.

2- More slip coefficient corresponds to higher slip velocity. An interesting fact: generate a negative slip velocity (fluid
flow in opposite direction of X) in the region of 0.2 < X < 6 along the upper wall and also observe a fluctuation in slip velocity
profile along the lower wall.

3- Higher mass fraction of FMWCNT corresponds to larger outlet Nusselt number; while more amounts of Nu are achieved
at lower Ri. Moreover larger slip coefficient leads to less Nu. However in the absence of buoyancy forces, the most value of
Nu is achieved at B = 0.005.

4- The most heat transfer rate will be occurred at higher amounts of nanoparticles mass fraction and in the lower amounts
of slip coefficient besides in the absence or ignorable amounts of buoyancy forces; which means the effects of gravity should
be included at the small levels of the slip coefficient through the liquid micro flows.
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