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4 Department of Mathematics, Faculty of Mechanical Engineering, Lublin University of Technology,

20-618 Lublin, Poland; p.zaprawa@pollub.pl
* Correspondence: bulboaca@math.ubbcluj.ro; Tel.: +40-729087153
† Dedicated to the memory of Professor Bogdan Tadeusz Bojarski (1931–2018).
‡ These authors contributed equally to this work.

Abstract: A branch of complex analysis with a rich history is geometric function theory, which first
appeared in the early 20th century. The function theory deals with a variety of analytical tools to study
the geometric features of complex-valued functions. The main purpose of this paper is to estimate
more accurate bounds for the coefficient |an| of the functions that belong to a class of bi-univalent
functions with missing coefficients that are defined by using the subordination. The significance of
our present results consists of improvements to some previous results concerning different recent
subclasses of bi-univalent functions, and the aim of this paper is to improve the results of previous
outcomes. In addition, important examples of some classes of such functions are provided, which
can help to understand the issues related to these functions.

Keywords: analytic and univalent function; bi-univalent function; coefficient estimates; subordination
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1. Introduction

The study of univalent functions is traditional, and it is categorized under geometric
function theory (GFT) since numerous noteworthy characteristics of univalent functions can
be found in the basic geometrical properties. In 1851 [1], the Reimann mapping theorem led
to the development of GFT. Nevertheless, it helps to discover new results in a wide range
of topics, including contemporary mathematical physics and more established branches
of physics, like fluid dynamics, nonlinear integrable systems theory, and the theory of
partial differential equations. One of the most fascinating areas of geometric function
theory is the theory of univalent functions, which is a well-known classical topic of complex
analytic functions. Around the 20th century, many geometric aspects of analytical functions
were introduced and studied, like starlikeness, convexity, close-to-convexity, typically real
functions, etc.

Let D := {z ∈ C : |z| < 1} denote the open unit disk in the complex plane C, and let
A be the class of functions f analytic in D that has the following representation:

f (z) = z +
∞

∑
k=2

akzk, z ∈ D. (1)

Axioms 2022, 12, 1071. https://doi.org/10.3390/axioms12121071 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12121071
https://doi.org/10.3390/axioms12121071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-9176-3932
https://orcid.org/0000-0002-2144-1097
https://orcid.org/0000-0001-8026-218X
https://orcid.org/0000-0002-7279-9582
https://doi.org/10.3390/axioms12121071
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12121071?type=check_update&version=1


Axioms 2022, 12, 1071 2 of 14

Denote S as the subclass of all functions of A that are univalent in D. The study of the
characteristics of normalized univalent functions that fall under the class and are defined
in the open unit disk D is the main focus of the geometry theory of functions.

Furthermore, let B represent the category of all analytic functions v in D that fulfil
the criteria v(0) = 0 and |v(z)| < 1 for all z ∈ D. If the image of the open unit disk by
a univalent function has some geometrical characteristics, it may be of interest to find an
analytic characterization of such functions. The best example of a domain with desirable
features is a convex domain and a starlike one with regard to a point. Many subclasses of
those analytic univalent functions that map onto these above-mentioned domains were
introduced and thoroughly studied, such as the well-known classes K and S∗ of convex
and starlike functions, respectively.

In geometric function theory, determining the bounds for the coefficients |an| is a
crucial task since it reveals details about the geometric characteristics of these functions.
For instance, the growth and distortion bounds, as well as the covering theorems, are given
by the bound for the second coefficient |a2| of functions f ∈ S .

Every function f ∈ S has an inverse f−1, which is defined by

f−1( f (z)) = z (z ∈ D) and f
(

f−1(w)
)
= w

(
|w| < r0( f ), r0( f ) ≥ 1

4

)
,

with the expansion of the power series

f−1(w) = w +
∞

∑
k=2

bkwk = w− a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . .

A function f ∈ A is said to be bi-univalent in D if f is univalent in D and f−1 has a univalent
analytic extension in D. For brevity, we will denote this analytic extension by g := f−1.
The studies of the class of bi-univalent functions in D was initiated by Levin [2], who
proved that

|a2| < 1.51.

Following these studies, Branan and Clunie [3] improved Levin’s result by the subsequent
variant

|a2| ≤
√

2.

Furthermore, Netanyahu [4] showed that for the bi-univalent functions,

max |a2| =
3
4

.

The fact that the following functions are bi-univalent must be mentioned:

f1(z) =
z

1− z
, f2(z) = log

(
1

1− z

)
.

And, these correspond to the inverse functions of

f−1
1 (w) =

w
1 + w

, f−1
2 (w) =

ew − 1
ew .

Let Σ denote the family of bi-univalent functions in D. The study of Srivastava et al. [5]
provides a brief historical review of the roles in the family Σ along with a few examples.
Regarding [5], the class Σ of bi-univalent functions has numerous subfamilies, each of
which has a different set of analytic features, and many authors have attempted to explore
these families, for example, [6–13]. In a few of these articles, the authors studied some
subclasses of bi-univalent functions connected with the Faber and Laguerre polynomials,
determined estimates for coefficients and Hankel determinants for different subclasses of
bi-univalent functions associated with Hohlov operator and Horadam polynomials, and
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gave some estimates for the Fekete–Szegő functional. Other related issues can be found
in [14–16], while, in general, it is still difficult to determine the extremal functions for
bi-univalent functions.

The Faber polynomials expansion method was first described by Faber [17], and he
used this method to study the coefficient boundaries of |am| for m ≥ 3. In the mathematical
sciences, notably in the field of geometric function theory, these Faber polynomials are
crucial. In this regard, in order to obtain the optimal bounds of |an| for the coefficients of
bi-univalent functions, some researchers used the Faber polynomial expansions [18–23].

Let f and F be two analytic functions in D; the function f is considered subordinate
to F, denoted by f (ζ) ≺ F(ζ), if there exists a function ω : D → D analytic in D with
ω(0) = 0, such that f = F ◦ω. The above function ω is considered a subordination function
(see [24], p. 125). If f (ζ) ≺ F(ζ), then f (0) = F(0) and f (D) ⊂ F(D), and with the
additional assumption that F is univalent in D, the subordination f (ζ) ≺ F(ζ) is equivalent
to f (0) = F(0) and f (D) ⊂ F(D) (see [25], p. 15).

The conceptual underpinnings of the current research problem and important research-
related issues are shown in this section. A review of comparable studies sheds some light
on the advantages and shortcomings of the earlier investigations.

Let h be an analytic function with positive real part in D and the power series expansion

h(z) = 1 + B1z + B2z2 + B3z3 + . . . , z ∈ D, with B1 6= 0.

With the help of the aforementioned type of function, we define a subclass of A that
is a generalization of Definition 1 from [20], assuming the weaker assumption λ ≥ 0
as follows:

Definition 1. A function f ∈ Σ is said to be in the class NΣ(λ, δ, h) for λ ≥ 0 and δ ≥ 0 if

Iλ,δ[ f ](z) := (1− λ)
f (z)

z
+ λ f ′(z) + δz f ′′(z) ≺ h(z), and

Iλ,δ[g](w) := (1− λ)
g(w)

w
+ λg′(w) + δwg′′(w) ≺ h(w), g = f−1.

Here, we present an example that helps prove that this class is nonempty and contains
functions other than the identity one.

Remark 1. (i) We emphasize that the class NΣ(λ, δ, h) is not empty for appropriate choices of the
parameters. Thus, letting

h∗(z) = 1 + 0.35z + 0.1z2,

like we may see in Figure 1a made using the MAPLE™ computer software, we have

Re h∗(z) > 0, z ∈ D, B1 = 0.35 = h′∗(0) 6= 0, B2 = 0.1,

and
Bn = 0 for n ≥ 3.

It is easy to show that

Re
zh′∗(z)

h∗(z)− 1
= Re

2z + 3.5
z + 3.5

> 0.6 > 0, z ∈ D.

Hence, h∗ is a starlike (univalent) function in D with respect to the point z0 = 1.
The function

f∗(z) =
z

1 + 0.2z
∈ S

and its inverse
g∗(w) = f−1

∗ (w) =
w

1− 0.2w
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are analytic in D; Hence, f∗ ∈ Σ.
Also, for λ = 0.2 and δ = 0.1, a simple computation shows that

I0.2,0.1[ f∗](z) =
1

0.2z + 1
− 0.04z

(0.2z + 1)2 + 0.1z
(
− 0.4
(0.2z + 1)2 +

0.08z
(0.2z + 1)3

)
and

I0.2,0.1[g∗](w) =
1

−0.2w + 1
+

0.04w
(−0.2w + 1)2 + 0.1w

(
0.4

(−0.2w + 1)2 +
0.08w

(−0.2w + 1)3

)
.

Since h∗ is univalent in D, using the inclusions

I0.2,0.1[ f∗](D) ⊂ h(D) and I0.2,0.1[g∗](D) ⊂ h(D)

that follow from Figure 1b and Figure 1c, respectively, also made using MAPLE™, we conclude that

I0.2,0.1[ f∗](z) ≺ h∗(z) and I0.2,0.1[g∗](w) ≺ h∗(w).

Therefore, f∗ ∈ NΣ(0.2, 0.1, h∗). Therefore, there exists values of the parameters λ, δ, and functions
h, such that

NΣ(λ, δ, h) \ {Id} 6= ∅,

where Id denotes the identity function. To not lengthen the paper unnecessarily, we omit the
MAPLE™ codes for the figures we used throughout the article.

(a) The image h(D) (b) The inclusion
I0.2,0.1[ f∗](D) ⊂ h∗(D)

(c) The inclusion
I0.2,0.1[g∗](D) ⊂ h∗(D)

Figure 1. Figures for Remark 1.

(ii) If, in the above example, the values of |λ| and |δ| decrease to 0, then the behavior of the

functions Iλ,δ[ f∗] and Iλ,δ[g∗] becomes very similar to that of the functions
f∗(z)

z
and

g∗(z)
z

. In
some examples we made using MAPLE™ software, we saw that the above set inclusions hold. Hence,
these new functions belong to the classes of Definition 1. These indicate a consequence of the general
fact that

lim
(λ,δ)→(0,0)

Iλ,δ[ f∗](z) =
f∗(z)

z
and lim

(λ,δ)→(0,0)
Iλ,δ[g∗](z) =

f∗(z)
z

, z ∈ D;

that is,

NΣ(0, 0, h) = NΣ

(
0, 0,

f (z)
z

)
for all f ∈ Σ.

(iii) If, in similar examples, the values of |λ| and |δ| increase, then there are some cases when
the subordinations of Definition 1 do or do not hold, as follows (to not lengthen the paper, we omit
the corresponding graphical representations):
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(a) f̃ (z) =
z

1 + 0.1z
∈ NΣ(1.1, 0.3, h∗);

(b) f∗(z) =
z

1 + 0.2z
/∈ NΣ(1.1, 0.3, h∗), if h∗(z) = 1 + 0.35z + 0.1z2.

In a similar way, the authors of [26] defined the following family of analytic functions:

S (ν, ρ; h) =
{

f ∈ A : 1 +
1
ρ

(
z f ′(z) + νz2 f ′′(z)

(1− ν) f (z) + νz f ′(z)
− 1
)
≺ h(z), 0 ≤ ν ≤ 1, ρ ∈ C \ {0}

}
and obtained a bound for the general coefficients of the bi-univalent functions of this class
by using the Faber polynomials subject to a series of assumptions.

In our paper, we replace the assumptions for the function h from [26] with some
weaker ones as stated above (i.e., omitting the conditions that h(D) is symmetric with
respect of the real axis and B1 > 0).

Here, we present an example that helps to better understand the above explanation
for the function h and proves that this family is nonempty, containing other functions than
the identity one.

Remark 2. In the below example, we consider a case when h(D) is not symmetric with respect
of the real axis and B1 6= 0, as we assumed in Definition 1. We show that for some values of the
parameters, the class S (ν, ρ; h) is not empty. Taking

ĥ(z) = 1 + 0.35(1 + i)z + 0.1z2,

since ĥ(z) 6= ĥ(z) for all z ∈ D, it follows that the domain ĥ(D) is not symmetric with respect of
the real axis and

B1 = 0.35(1 + i) = ĥ′(0) 6= 0.

Like we may see in Figure 2a, we have Re ĥ(z) > 0, z ∈ D, and Figure 2b, also made with
MAPLE™ software, shows that

Re J(z) := Re
zĥ′(z)

ĥ(z)− 1
= Re

3.5(1 + i) + 2z
3.5(1 + i) + z

> 0.7 > 0, z ∈ D.

Hence, ĥ is a starlike (univalent) function with respect to the point z0 = 1. Denoting

Lν,ρ[ f ](z) := 1 +
1
ρ

(
z f ′(z) + νz2 f ′′(z)

(1− ν) f (z) + νz f ′(z)
− 1
)

,

with the same notation as in Remark 1, we have (see Figure 2c)

L0.5,4[ f∗](D) ⊂ ĥ(D).

Using the fact that h̃ is univalent in D, the above inclusion shows that

L4,0.5[ f∗](z) ≺ ĥ(z), i.e. f∗ ∈ S
(

0.5, 4; h̃
)

.

In conclusion, for the above choices of functions and the corresponding parameters, we have

S (ν, ρ; h) \ {Id} 6= ∅.
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(a) The image ĥ(D)
(b) The inclusion

J(D) ⊂
{w ∈ C : Re w > 0}

(c) The inclusion
L0.5,4[ f∗](D) ⊂ ĥ(D)

Figure 2. Figures for Remark 2.

In [18], the researchers proved the following result for analytic functions of the family
S (ν, ρ; h):

Theorem ([18] Theorem 4). Let f (z) = z +
∞
∑

k=n
akzk (n ≥ 2) and its inverse map g = f−1 be

in S (ν, ρ; h) with |B2| ≤ B1. Then,

(i)

|an| ≤ min

{
|ρ|B1

(n− 1)[1 + ν(n− 1)]
;

√
2|ρ|B1

n(2n− 2)[1 + ν(2n− 2)]

}
,

(ii) ∣∣∣na2
n − a2n−1

∣∣∣ ≤ |ρ|B1

(2n− 2)[1 + ν(2n− 2)]
.

The goal of the current study is to estimate upper bounds for the coefficients |an| for
those functions that belong to the set of bi-univalent functions with missing coefficients
and defined by theNΣ(λ, δ, h). This paper aims to improve some of the results from [18,27].
Additionally, connections to some previously obtained results are made.

The below lemmas are required to prove our results.

Lemma 1 ([28,29]). Let f ∈ S be given by (1). Then, the coefficients of its inverse map g = f−1

are given in terms of the Faber polynomials of f with

g(w) = f−1(w) = w +
∞

∑
n=2

1
n

K−n
n−1(a2, a3, . . . , an)wn,

where

K−n
n−1 =

(−n)!
(−2n + 1)!(n− 1)!

an−1
2 +

(−n)!(
2(−n + 1)

)
!(n− 3)!

an−3
2 a3

+
(−n)!

(−2n + 3)!(n− 4)!
an−4

2 a4 +
(−n)!(

2(−n + 2)
)
!(n− 5)!

an−5
2

[
a5 + (−n + 2)a2

3

]
+

(−n)!
(−2n + 5)!(n− 6)!

an−6
2 [a6 + (−2n + 5)a3a4] + ∑

j≥7
an−j

2 Vj,

such that Vj (7 ≤ j ≤ n) is a homogeneous polynomial in the variables a2, a3, . . . , an and the
expressions such as (for example) (−m)! are to be interpreted symbolically by

(−m)! ≡ Γ(1−m) := (−m)(−m− 1)(−m− 2) . . . , m ∈ N0 := N∪ {0}, N := {1, 2, . . . }.
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We see that the initial three terms of K−n
n−1 are given by

K−2
1 = −2a2, K−3

2 = 3
(

2a2
2 − a3

)
, and K−4

3 = −4
(

5a3
2 − 5a2a3 + a4

)
.

Typically, for every real number p, the expansion of Kp
n is given below (see [28] for

details; see also [29], p. 349):

Kp
n = pan+1 +

p(p− 1)
2

D2
n +

p!
(p− 3)!3!

D3
n + . . . +

p!
(p− n)!n!

Dn
n .

Lemma 2 ([30]). Let f (z) = z +
∞
∑

k=n
akzk, n ≥ 2 be a univalent function in D and

f−1(w) = w +
∞

∑
k=n

bkwk
(
|w| < r0( f ), r0( f ) ≥ 1

4

)
.

Then,
b2n−1 = na2

n − a2n−1, and bk = −ak for n ≤ k ≤ 2n− 2.

Lemma 3 ([31] Exercise 9, p. 172). Assume that v(z) =
∞
∑

j=1
pjzj ∈ B. Then,

|pn| ≤ 1, n ≥ 2.

This lemma represents a special case of the result in [31] [Exercise 9, p. 172] obtained
from this exercise for p0 = 0.

2. Main Results

First, we prove the next lemma.

Lemma 4. Let u(z) = u1z + u2z2 + u3z3 + · · · ∈ B and s be a complex number. Then, for all
n ∈ N, the following inequality holds:∣∣∣u2n − su2

n

∣∣∣ ≤ 1 + (|s| − 1)
∣∣∣u2

n

∣∣∣ ≤ max{1; |s|}.

Moreover, the functions u(z) = z and u(z) = z2 prove that the above inequality is sharp for |s| ≥ 1
and for |s| < 1, respectively.

Proof. For u(z) = u1z + u2z2 + u3z3 + · · · ∈ B and a fixed n ∈ N, let

εk := e2kπi/n, k ∈ {1, 2, . . . , n}

be the nth order complex roots of the unit. If we define the function v : D→ C by

v(z) :=
1
n

n

∑
k=1

u(εkz), z ∈ D, (2)

using the well-known relation

n

∑
k=1

εm
k =

{
0, if m ∈ N is not a multiple of n,
n, if m ∈ N is a multiple of n,

it follows that
v(z) = unzn + u2nz2n + . . . , z ∈ D. (3)
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Since u is an analytic function in D, from Definition (2), it follows that v ia also analytic in
D and v(0) = 0. Moreover, since u ∈ B, we have

|v(z)| ≤ 1
n

n

∑
k=1

∣∣∣u(e−2ikπ/nz
)∣∣∣ < n

n
= 1, z ∈ D.

Therefore, v ∈ B.
Because the function χ(z) := zn is a surjective endomorphism of the unit disk D, set-

ting ζ := zn in (3) and using the fact that v ∈ B, we deduce that the function ψ : D→ C by

ψ(ζ) := unζ + u2nζ2 + u3nζ3 + . . . , ζ ∈ D

belongs to the class B. Now, using [32] (page 10, inequality (7)) for the function ψ ∈ B, we
obtain the desired outcome with the aforementioned power series expansion.

We now prove the following main theorem using the aforementioned lemmas and a
new method.

Theorem 1. Let the function f (z) = z +
∞
∑

k=n0

akzk ∈ NΣ(λ, δ, h), n0 ≥ 2. Then,

|an0 | ≤ min

 |B1|
1 + (n0 − 1)(λ + n0δ)

;

√√√√ 2|B1|max
{

1;
∣∣∣ B2

B1

∣∣∣}
n0
(
1 + (2n0 − 2)[λ + (2n0 − 1)δ]

)
, (4)

and ∣∣∣n0a2
n0
− a2n0−1

∣∣∣ ≤ |B1|max
{

1;
∣∣∣ B2

B1

∣∣∣}
1 + (2n0 − 2)[λ + (2n0 − 1)δ]

. (5)

Proof. If f (z) = z +
∞
∑

k=n0

akzk ∈ NΣ(λ, δ, h), then there are two functions as defined by the

quasi-subordination u, v ∈ B of the form

u(z) =
∞

∑
k=1

ukzn and v(z) =
∞

∑
k=1

vkzk,

satisfying

(1− λ)
f (z)

z
+ λ f ′(z) + δz f ′′(z) = 1 +

∞

∑
k=n0

[1 + (k− 1)(λ + kδ)]akzk−1 = h(u(z)) (6)

and

(1− λ)
g(w)

w
+ λg′(w) + δwg′′(w) = 1 +

∞

∑
k=2

[1 + (k− 1)(λ + kδ)]bkwk−1 = h(v(w)), (7)

respectively, where, according to Lemma 1,

bk =
1
k

K−k
n−1(a2, a3, . . . , ak), k ≥ 2. (8)

We have

h(u(z)) = 1 + B1

(
u1z + u2z2 + . . .

)
+ B2

(
u1z + u2z2 + . . .

)2
+ . . . , (9)

and, according to (6) and (9), the corresponding coefficients of the power expansions are
equal. Hence, we equate these coefficients step by step.
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First, from (6), we have ak = 0 for 2 ≤ k ≤ n0 − 1. Thus, the term containing “z” in (9)
is equal to zero, that is, B1u1 = 0. Using the fact that B1 6= 0, it follows u1 = 0. Therefore,
(9) becomes

h(u(z)) = 1 + B1

(
u2z2 + . . .

)
+ B2

(
u2z2 + . . .

)2
+ . . . . (10)

Secondly, since, in (6), the term containing “z2” is zero, it follows that, for the corre-
sponding term of (10), we have B1u2 = 0. Since B1 6= 0, it follows that u2 = 0. Hence, (10)
becomes

h(u(z)) = 1 + B1

(
u3z3 + . . .

)
+ B2

(
u3z3 + . . .

)2
+ . . . .

We repeat the same method n0 − 2 times and take into account that from the “n0 − 3”
step we obtain

h(u(z)) = 1 + B1

(
un0−2zn0−2 + . . .

)
+ B2

(
un0−2zn0−2 + . . .

)2
+ . . . . (11)

Since the coefficient of term containing “zn0−2” in (6) is zero, we obtain that the relevant
coefficient in (11) is B1un0−2 = 0. Thus, the assumption B1 6= 0 implies un0−2 = 0. Hence,
(11) becomes

h(u(z)) = 1 + B1

(
un0−1zn0−1 + . . .

)
+ B2

(
un0−1zn0−1 + . . .

)2
+ . . . . (12)

Now, by comparing the terms in “zn0−1” in (6) and (12), we obtain that

B1un0−1 = [1 + (n0 − 1)(λ + n0δ)]an0 ,

that is,

an0 =
B1un0−1

1 + (n0 − 1)(λ + n0δ)
. (13)

On the other hand, since ak = 0 for 2 ≤ k ≤ n0 − 1, from (8), we obtain bk = 0 for
2 ≤ k ≤ n0 − 1, and from (8), we have

bn0 =
1
n0

K−n0
n0−1(0, 0, . . . , 0, an0) = −an0 .

Furthermore, similar to the method described above, from the relation (7), we obtain that
the term containing “wn0−1” is given by

B1vn0−1 = −[1 + (n0 − 1)(λ + n0δ)]an0 ,

that is,

an0 = −
B1vn0−1

1 + (n0 − 1)(λ + n0δ)
. (14)

From (13) and (14), using Lemma 3 and considering the previous reasons, we obtain

|an0 | = |bn0 | ≤
|B1|

1 + (n0 − 1)(λ + n0δ)
. (15)

Also, equating the terms that contain “z2n0−2” from (6) for k = 2n0 − 1 and those
of (12), we obtain(

1 + (2n0 − 2)[λ + (2n0 − 1)δ]
)

a2n0−1 = B1u2n0−2 + B2u2
n0−1 = B1

(
u2n0−2 +

B2

B1
u2

n0−1

)
.
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Thus, based on the previous equality and according to the Lemma 4, it follows that(
1 + (2n0 − 2)[λ + (2n0 − 1)δ]

)∣∣a2n0−1
∣∣ ≤ |B1|max

{
1;
∣∣∣∣B2

B1

∣∣∣∣}.

Hence,

|a2n0−1| ≤
|B1|max

{
1;
∣∣∣ B2

B1

∣∣∣}
1 + (2n0 − 2)[λ + (2n0 − 1)δ]

. (16)

From Definition 1, because f ∈ NΣ(λ, δ, h) implies g ∈ NΣ(λ, δ, h) and using the
above method of proof, we have

(1− λ)
g(w)

w
+ λg′(w) + δwg′′(w) = 1 +

∞

∑
k=n0

[1 + (k− 1)(λ + kδ)]bkwk−1 = h(v(w)).

Hence, we obtain

|b2n0−1| ≤
|B1|max

{
1;
∣∣ B2

B1

∣∣}
1 + (2n0 − 2)[λ + (2n0 − 1)δ]

. (17)

Furthermore, in view of Lemma 2, using the relations (16) and (17), we deduce that

|an0 | ≤

√
|a2n0−1|+ |b2n0−1|

n0
≤

√√√√ 2|B1|max
{

1;
∣∣∣ B2

B1

∣∣∣}
n0
(
1 + (2n0 − 2)[λ + (2n0 − 1)δ]

) , (18)

and from (15) and (18), we obtain the inequality (4).
In addition, using (17) and Lemma 2, it follows that

|n0a2
n0
− a2n0−1| = |b2n0−1| ≤

|B1|max
{

1;
∣∣∣ B2

B1

∣∣∣}
1 + (2n0 − 2)[λ + (2n0 − 1)δ]

,

which completes our proof.

Next, this study shows why this theorem improves and generalizes some previous
ones by a suitable choice of parameters.

Remark 3. By choosing λ, δ, and h properly, we obtain from Theorem 1 the bounds that are better,
in some ranges of the parameters, than the estimates obtained before.

1. If

h(z) =
1 + (1− 2α)z

1− z
, 0 ≤ α < 1,

then the bounds are better than those in [20, Theorem 2];
2. If

h(z) =
1 + (1− 2α)z

1− z
, 0 ≤ α < 1,

and δ = 0 or λ = 1, then the bounds are better than those in [20] [Corollary 3] and [20] [Corollary 4],
respectively;

3. If δ = 0, then the bounds are better than those in [33] [Theorems 3.1] in the case of
subordination.

In the following part, we emphasize the significance of our present results that improve
some previous results concerning different recent subclasses of bi-univalent functions.
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Remark 4. In the proof of Theorem 4 of [18], assume for convenience that ρ = 1, ϑ = 0 with

f (z) = z +
∞
∑

k=n
akzk ∈ S (0, 1; h). By the definition of the subordination, there exist two functions

u, v ∈ B with

u(z) =
∞

∑
k=1

ukzn and v(z) =
∞

∑
k=1

vkzk,

satisfying
z f ′(z)

f (z)
= h(u(z)) and

wg′(w)

g(w)
= h(v(w)),

respectively.
Since

z f ′(z)
f (z)

∣∣∣∣
z=0

= 1,

it follows that
z f ′(z)

f (z)
= 1 + β1z + . . . + βnzn + . . . , z ∈ D, (19)

that is,
z + nanzn + . . . = (z + anzn + . . . )

(
1 + β1z + β2z2 + . . .

)
, z ∈ D.

Equating the corresponding coefficients of the above relation, we obtain

β1 = β2 = · · · = βn−2 = 0,

βn−1 = (n− 1)an,

and from (19), it follows that

z f ′(z)
f (z)

= 1 + (n− 1)anzn−1 + . . . , z ∈ D.

Let us consider again, for convenience, that n = 3. Thus,

f (z) = z + a3z3 + a4z4 + . . . ,

then
z f ′(z)

f (z)
= 1 + β2z2 + β3z3 + . . . ,

where
β2 = 2a3, β3 = 3a4, β4 = 4a5 − 2a2

3.

Consequently, if f has the above form, then it is impossible that β2 = 2a3 and β4 = 4a5 at the
same time. We have β4 = 4a5 while n0 = 5, but in this case, β2 = 0. Therefore, the relation (2.11)
of [18] and the Theorem 4 of [18] are not correct. Similarly, for the same reason, Theorem 2.6 of [27]
is not correct.

Example 1. As an example of Theorem 1, if we consider the analytic function in D defined by

f (z) :=
1
`

log
(

1
1− `z

)
= z +

`z2

2
+

`2z3

3
+ . . . , z ∈ D, with 0 < |`| ≤ 1,

then f ∈ A and its inverse is f−1(w) =
e`w − 1
`e`w , which have an analytic extension in D denoted

as g(z) =
e`z − 1
`e`z .

Letting
h(z) := 1 + 0.35z + 0.1z2 + 0.1z3, z ∈ D, (20)
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like we may see in Figure 3a made with MAPLE™ computer software, we have

Re h(z) > 0, z ∈ D, B1 = 0.35 = h′(0) 6= 0, B2 = 0.1, B3 = 0.1,

and
Bn = 0 for n ≥ 4.

Also, we see that

Re
zh′(z)

h(z)− 1
= Re

3z2 + 2z + 3.5
z2 + z + 3.5

> 0.1 > 0, z ∈ D.

Hence, h is a starlike (univalent) function in D with respect to the point z0 = 1. For some “very
small” values of the parameter |`| (i.e., close to zero), we have f ∈ NΣ(1.1, 0.15, h) with h given
by (20) since the ranges f (D) and g(D) with small neighborhoods of the point w0 = 1 are included
in h(D). According to Theorem 1, the inequalities (4) and (5) reduce to

|`| ≤ 0.5843487098 . . . and |`| ≤ 0.7156780854 . . . ,

respectively. Hence,
0 < |`| ≤ 0.5843487098 . . . . (21)

(i) Unfortunately, the upper bound of (21) represents a necessary but not sufficient condition
for f ∈ NΣ(1.1, 0.15, h) with h given by (20). Let us consider λ = 1.1 and δ = 0.15. Thus, for
` = 0.5843487098 from Figure 3b,c, we see that

I1.1,0.15[ f ](D) 6⊂ h(D) and I1.1,0.15[g](D) 6⊂ h(D),

but the reverse inclusions are true. Hence, for ` = 0.5843487098, we have f /∈ NΣ(1.1, 0.15, h).

(a) The image h(D) (b) The inclusion
h(D) ⊂ I1.1,0.15[ f ](D)

(c) The inclusion
h(D) ⊂ I1.1,0.15[g](D)

Figure 3. Figures for Example 1(i).

(ii) As we see in Figure 4a,b, for λ = 1.1, δ = 0.15, and, for example, ` = 0.201, we have the
inclusions

I1.1,0.15[ f ](D) ⊂ h(D) and I1.1,0.15[g](D) ⊂ h(D),

and from the fact that h is univalent in D, it follows that both of the subordinations of Definition 1
hold, i.e., f ∈ NΣ(1.1, 0.15, h).
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(a) The inclusion
I1.1,0.15[ f ](D) ⊂ h(D)

(b) The inclusion
I1.1,0.15[g](D) ⊂ h(D)

Figure 4. Figures for Example 1(ii).

3. Conclusions

The present studies have been extensively made in order to make conclusions that
support the justification for the current research, taking into account the aims, methodol-
ogy, conclusions, and results of the investigations. The coefficient boundaries of analytic
functions can be found with the use of the Faber polynomial expansion approach, which
has been proven to be effective.

We have defined a new subclass of bi-univalent functions in this article, along with sev-
eral useful examples. In the concluding part, we underline that by utilizing subordination,
we were able to determine the bounds for the coefficient |an| for the class of bi-univalent
functions with missing coefficients, emphasizing the novelty of the methods used for the
proofs and comments.

Moreover, by applying Lemma 4, the inequalities of Theorem 1 for these function
classes represent an improvement of a few results for some ranges of the parameters.

We expect that this method can be applied to the classes of harmonic and meromorphic
functions in some future works.
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