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Abstract: In this paper, a digital time domain 
method for instantaneous harmonics extraction in 
active power filters is presented. The proposed 
recursive method is based on creating an 
orthogonal space to extract the reactive current. 
This method reduces the order of computation 
considerably in comparison with the similar 
methods in frequency domain. 

1. Introduction 

Instantaneous reactive power compensation 
methods are generally considered in low and medium 
active power filters (APF) [1]. Such strategies have 
intrinsically smoother transient response behaviour 
in comparison with other methods. Conventional 
(non-hybrid) methods for instantaneous reactive 
power compensation are generally based on 
extracting and tracking the instantaneous reference 
current [1-3]. Also hybrid topologies are presented in 
which a proportion of the source harmonics current 
is used to control APF system [4-6]. A typical 
structure of an APF system is shown in Fig.1. 

Extracting the reference current instantaneously 
can be accomplished in both frequency and time 
domain. The frequency domain methods are based 
on applying FFT, which requires processors with this 
capability and considerably higher order of 
computation. Furthermore, to obtain proper results, 
bit allocation should be increased or floating-point 
systems ought to be used, which increases the cost 
and complexity. Modified-FFT based algorithms are 
also developed which relatively reduces the order of 
computation in comparison to conventional FFT 
algorithms [7]. 

In this paper, extracting the instantaneous 
reference current is developed in time domain by 
using a recursion algorithm. In this method the order 
of computation is reduced in comparison to other 
similar algorithms in frequency domain and the error 
due to truncation is almost instantaneous and non-
accumulative. The implementation is simple and the 
required processor memory/speed is reduced 
considerably. This method can be extended to 
control hybrid topologies including the one proposed 
by Fujita and Akagi [4]. The presented method 
derives source harmonic current ‘ shi ’ in three-phase 

systems without applying PQ theorem. This is an 
advantage considering that using PQ theorem (dq-
frames) in unbalanced / unsymmetrical systems has 
drawbacks [6]. In the proposed method an orthogonal 
space is created to extract the reactive current term by 
considering the source voltage waveform. 

 
Fig. 1: A general structure of an APF system  

2. Reactive Current 

Assume that a load voltage and current are v(t) 
and i(t) respectively at any instant of time and are 
periodic with same period ‘T’. Thus the active power 
and apparent power are defined as following: 
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And power factor is defined as: 
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Desired compensation would happen when           
‘PF = 1’. If the load is voltage dependent, its current 
can be divided into active ‘ia(t)’ and reactive ‘ir(t)’ 
terms as defined below: 
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In other words, the reactive current not only does not 
transfer any active power (5), but also the reactive 
current is as such to minimize the effective active 
current (6). Using Cauchy-Schwartz inequality 
shown in (7), it can be proven that in order to 
minimize Ia,rms , the active current term must be 
proportional to voltage. 
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∫∫∫ ≤










 b

a

2
b

a

2

2b

a

h.ffh      (7) 

The equality in the above equation is true if and 
only if ‘f = G h’, where G is a constant. By 
substituting ‘f =  v(t)’, ‘h = ia(t)’ and ‘[a, b]=T’ the 
following relation is established. 
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Therefore Ia,rms is minimum if and only if  
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Where ‘G’ is the non-linear load conductance and 
can be obtained as follows: 
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In all the above equations the integral limits are 
shown as ∫

T

, which means only the integral duration 

is important and the starting time can be neglected. 
In other words: 
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The instantaneous active and reactive power can 
be obtained from the above derivation. Thus the 
instantaneous active and apparent power are: 
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And the instantaneous power factor and 

conductance are: 
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Therefore the instantaneous reactive current at 
steady-state is: 
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3. Instantaneous Reactive Current 
Compensation and Inverter Active Flow 

A general single-phase shunt non-hybrid reactive 
power compensation system based on reactive current 
injection is shown in Fig.2. The mentioned circuit can 
be viewed as a compensator for one-phase of a three-
phase system. 

 
Fig. 2: A single-phase non-hybrid APF  

In Fig.2, if at every instant of time, ic(t) is equal to 
ir(t), then the voltage supply is providing only the 
active current term which produces useful energy and 
the compensator is providing the reactive current 
term. Let’s assume, it is desired to increase the 
capacitor voltage at instant t = nT to be more than the 
cpacitor voltage at t = (n-1)T. This means in this 
period the capacitor should receive energy or in other 
words an active power flow is created from source 
toward inverter. The required active power for this 
voltage increase is called Pexcess and is defined as 
following: 
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Following the same formulation used in section 2, 
the optimized current (for not creating any 
secoundary reactive power) is: 
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To control the active power flow various methods 
are presented [1-3,8]. However, in most cases the 
designers have used a PI-controller [1,3,8]. The 
general block diagrm of such a controller is shown in 
Fig.3. 

 
Fig. 3: DC-Link voltage control 

Since in Fig. 3 the reference voltage (Vdc) is 
constant this method is called constant-voltage 
control. If the Controller has a proper DC-Gain, the 
output signal of this controller (V*) can be used as a 
measure to obtain Gexcess according to relation (20).  
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4. Control Strategy and Implementation 
Method 

From the above discution and using equations 
(17) and (19), the following relation, which 
establishes the control strategy, is obtained: 
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In the above relation G(t) Controls the injected 
reactive power and Gexcess controls the DC-link 
voltage. To digitally implement this control strategy 
a proper algorithm is required to calculate G(t) 
instantaneously. Therefore, the required discrete 
relations must be obtained using the same idea as the 
continuous equation (21).  

Let’s assume that N samples from voltage and 
current are taken in one period. Thus:  
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Therefore, for any sample ‘n’, G(n) is obtained as 
following: 
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The same relations can be deduced for the 
(n+1)th sample as below: 
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Calculation of )n(PN ⋅  and )n(VN 2
rms⋅  can be 

performed recursively at any instant ‘n’, to obtain 
G(n).  

5. Reference Current Extraction Algorithm 

It is assumed that the required Gexcess to control 
the inverter DC-link voltage is already calculated. To 
obtain G(n) both of n’th and (n-N+1)’th samples of 
the load voltage and current are required. Therefore 
at any instant, ‘N’ previous samples are needed. To 
accomplish this task shif registers can be used, but 
circular arrays are faster and simpler [7]. 
Configuration of a circular array is shown in Fig.4. 
In this structure, at any instant ‘n’, a pointer has the 
address of an element of the circular array. This 
element contain v(n-N+1) and i(n-N+1). These 
values are used to calculate ∆P and ∆V2 according to 
equations (27) and (28). After that, these values are 
updated and replaced by v(n) and i(n) to be used in 
the next cycle and the pointer is incremented. 

The proposed recursion algorithm based on 
equations (22) – (29) is shown if Fig.5. This 
algorithm requires two circular arrays to save the 
samples of ‘v(n)’ and ‘i(n)’ in one period. Two 

pointers ‘pv’ and ‘pi’ point to the ‘v(n-N+1)’ and 
‘i(n-N+1)’ respectively. These values with ‘v(n)’ and 
‘i(n)’ are used to calculate ∆P and ∆V2 for instant ‘n’. 
After calculation, the circular arrays will be updated 
by replacing the older values by ‘v(n)’ and ‘i(n)’ to 
use in the next cycle. Then G(n) will be calculated to 
obtain ‘ir(n)’. 

Fig. 4: Circular array 
 
The simulation results are shown in Fig.6. A 

single-phase full-bridge rectifier is used as the non-
linear load. The variations of G(t) when Gexcess=0 and  
harmonics current are shown respectively according 
to start time and when the load is changed.  

 

 
Fig. 5: Proposed algorithm 
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Fig. 6: Simulation results of a non-linear load 

6. Displacement / Harmonics Extraction 

Generally the load reactive current includes 
displacement and harmonics terms. The 
displacement term ‘id(t)’ has same frequency as the 
source voltage but is not inphase; and harmonics 
term ‘ih(t)’ does not have same frequency as the 
source voltage. 

)t(i)t(i)t(i hdr +=    (30) 
 Compensating the displacement term is not 
economical using APF. It can be easily compensated 
by capacitor/inductor banks or using STATCON. 
Also in hybrid topologies it is desired to extract only 
the harmonics term ‘ish’. The previous formulation 
can not extract only the harmonics term when the 
load current contains displacement. In the following 
section, the previous formulation will be modified to 
able to extract only the harmonics term. 

Consider a case when the load voltage has 
harmonics because of source impedance or its nature. 
By using Fourier series: 
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Now, w(t) is defined as below: 
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By substituting equations (31) and (33) in 
equation (34) and simplifying, the following relation 
is obtained: 
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For v(t) and w(t) to be orthogonal, it is only 
sufficient that v(t) would have no DC term and even 
harmonics. It is the performed scenario in three-phase 
systems because the source voltage is almost odd-
symmetrical. By using the same idea as discussed in 
section 4, the following relations are obtained: 
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By using equations (35) and (36) the proposed 
algorithm can be modified to extract only the 
harmonics term of the load current. Consider that it is 
not necessary to create another circular array to save 
w(n). It can be achieved using only the circular array 
that saves v(n) and calculating D(n). Fig.7 shows the 
simulation results of a three-phase full-bridge 
rectifier.  
 

 
Fig. 7: Simulation results: source voltage (top), load 

current (middle) and extracted load current harmonics 
(bottom) 

 7. Some Considerations 

- Both of FFT and PQ theorem (dq-frames) ignore 
the actual wave form of the source voltage and 
assume that it is a pure sine wave. The proposed 
method can extract reactive current term based on 
orthogonal bases by considering the source voltage 
waveform. 

- In a three-phase balanced source voltage system, 
the following relation is performed: 
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Then, in such systems there is no need to calculate 
Vrms

2 using circular arrays. 
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- For balancing unbalanced systems using non-
hybrid topologies, the following procedure can be 
used: 

1) Calculate G(t) for each phase of the system 
separately and define them as Ga(t), Gb(t) and 
Gc(t). 

2) If the compensation performed, then: 
 

ik(t) = Gk(t)⋅vk(t)      for  k = a,b,c 
 

Since it is desired to have a same current 
magnitude for each phase to have a balanced 
system, define Gs(t) = average{Gk(t)} and use it 
instead of Gk(t) for each phase. Thus, system is 
made balanced as ik(t) = Gs(t) ⋅vk(t). This method 
can be easily extended when it is not desired to 
compensate displacement current by using the 
same idea for D(t). 
- In hybrid topologies, for unbalanced systems 

the proposed method can be used to extract ‘ish’ 
separately for each phase of the system without the 
PQ theorem drawbacks [9].   

 8. Conclusion 

The proposed method performs extracting 
harmonics in time domain and reduces the order of 
computation considerably. This method can be used 
in hybrid / non-hybrid topologies to control an APF 
system. The proposed algorithm can be implemented 
digitally using DSP or FPGA.  
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