
CHAPTER 3: Virtual Machines and
Virtualization of Clusters and Data Centers

Presented by Faramarz Safi (Ph.D.)

Islamic Azad University, Najafabad Branch

1

SUMMARY

• The reincarnation of virtual machines (VMs) presents a great opportunity for
parallel, cluster, grid, cloud, and distributed computing.

• Virtualization technology benefits the computer and IT industries by enabling
users to share expensive hardware resources by multiplexing VMs on the same set
of hardware hosts.

• This chapter covers virtualization levels, VM architectures, virtual networking,
virtual cluster construction, and virtualized data-center design and automation in
cloud computing.

• In particular, the designs of dynamically structured clusters, grids, and clouds are
presented with VMs and virtual clusters.

2

3.1 IMPLEMENTATION LEVELS OF VIRTUALIZATION

• Virtualization is a computer architecture technology by which multiple virtual
machines (VMs) are multiplexed in the same hardware machine.

• The idea of VMs can be dated back to the 1960s [53]. The purpose of a VM is to
enhance resource sharing by many users and improve computer performance

• in terms of resource utilization and application flexibility.

• Hardware resources (CPU, memory, I/O devices, etc.) or software resources
(operating system and software libraries) can be virtualized in various functional
layers.

• This virtualization technology has been revitalized as the demand for distributed
and cloud computing increased sharply in recent years [41].

3

3.1.1 Levels of Virtualization Implementation

• A traditional computer runs with a host operating system specially tailored for its
hardware architecture, as shown in Figure 3.1(a).

• After virtualization, different user applications managed by their own operating
systems (guest OS) can run on the same hardware, independent of the host OS.

• This is often done by adding additional software, called a virtualization layer as
shown in Figure 3.1(b).

• This virtualization layer is known as hypervisor or virtual machine monitor (VMM)
[54]. The VMs are shown in the upper boxes, where applications run with their
own guest OS over the virtualized CPU, memory, and I/O resources.

• The main function of the software layer for virtualization is to virtualize the
physical hardware of a host machine into virtual resources to be used by the VMs,
exclusively.

• This can be implemented at various operational levels, as we will discuss shortly.

4

3.1.1 Levels of Virtualization Implementation

5

2.1.2 Design Objectives of Computer Clusters

• The virtualization software creates the
abstraction of VMs by interposing a
virtualization layer at various levels of a
computer system.

• Common virtualization layers include
the instruction set architecture (ISA)
level, hardware level, operating system
level, library support level, and
application level.

6

3.1.1.1 Instruction Set Architecture Level

• At the ISA level, virtualization is performed by emulating a given ISA by the ISA
of the host machine.

• For example, MIPS binary code can run on an x86-based host machine with
the help of ISA emulation. With this approach, it is possible to run a large
amount of legacy binary code written for various processors on any given new
hardware host machine. Instruction set emulation leads to virtual ISAs
created on any hardware machine.

• The basic emulation method is through code interpretation. An interpreter
program interprets the source instructions to target instructions one by one.
One source instruction may require tens or hundreds of native target
instructions to perform its function. Obviously, this process is relatively slow.

• For better performance, dynamic binary translation is desired. This approach
translates basic blocks of dynamic source instructions to target instructions.

• A virtual instruction set architecture (V-ISA) thus requires adding a processor-
specific software translation layer to the compiler.

7

3.1.1.2 Hardware Abstraction Level

• Hardware-level virtualization is performed right on top of the bare
hardware.

• On the one hand, this approach generates a virtual hardware environment
for a VM. The process manages the underlying hardware through
virtualization.

• The idea is to virtualize a computer’s resources, such as its processors,
memory, and I/O devices.

• The intention is to upgrade the hardware utilization rate by multiple
users concurrently.

• The idea was implemented in the IBM VM/370 in the 1960s. More
recently, the Xen hypervisor has been applied to virtualize x86-based
machines to run Linux or other guest OS applications.

• We will discuss hardware virtualization approaches in more detail in
Section 3.3.

8

3.1.1.3 Operating System Level

• This refers to an abstraction layer between traditional OS and user applications.
OS-level virtualization creates isolated containers on a single physical server and
the OS instances to utilize the hardware and software in data centers. The
containers behave like real servers.

• OS-level virtualization is commonly used in creating virtual hosting environments
to allocate hardware resources among a large number of mutually distrusting
users.

• It is also used, to a lesser extent, in consolidating server hardware by moving
services on separate hosts into containers or VMs on one server.

• OS-level virtualization is depicted in Section 3.1.3.

9

3.1.1.4 Library Support Level

• Most applications use APIs exported by user-level libraries rather than using
lengthy system calls by the OS.

• Since most systems provide well-documented APIs, such an interface becomes
another candidate for virtualization. Virtualization with library interfaces is
possible by controlling the communication link between applications and the rest
of a system through API hooks.

• The software tool WINE has implemented this approach to support Windows
applications on top of UNIX hosts.

• Another example is the vCUDA which allows applications executing within VMs to
leverage GPU hardware acceleration.

• This approach is detailed in Section 3.1.4.

10

3.1.1.5 User-Application Level

• Virtualization at the application level virtualizes an application as a VM. On a
traditional OS, an application often runs as a process.

• Therefore, application-level virtualization is also known as process-level virtualization.

• The most popular approach is to deploy high level language (HLL) VMs. In this scenario,
the virtualization layer sits as an application program on top of the operating system,
and the layer exports an abstraction of a VM that can run programs written and
compiled to a particular abstract machine definition.

• Any program written in the HLL and compiled for this VM will be able to run on it.

• The Microsoft .NET CLR and Java Virtual Machine (JVM) are two good examples of this
class of VM.

• Other forms of application-level virtualization are known as application isolation,
application sandboxing, or application streaming. The process involves wrapping the
application in a layer that is isolated from the host OS and other applications. The
result is an application that is much easier to distribute and remove from user
workstations.

• An example is the LANDesk application virtualization platform which deploys software
applications as self-contained, executable files in an isolated environment without
requiring installation, system modifications, or elevated security privileges.

11

3.1.1.6 Relative Merits of Different Approaches

• Table 3.1 compares the relative merits of implementing virtualization at various levels. The
column headings correspond to four technical merits.

• “Higher Performance” and “Application Flexibility” are self-explanatory.

• “Implementation Complexity” implies the cost to implement that particular virtualization
level.

• “Application Isolation” refers to the effort required to isolate resources committed to
different VMs.

• Each row corresponds to a particular level of virtualization.

• The number of X’s in the table cells reflects the advantage points of each implementation
level. Five X’s implies the best case and one X implies the worst case.

• Overall, hardware and OS support will yield the highest performance. However, the hardware
and application levels are also the most expensive to implement.

• User isolation is the most difficult to achieve. ISA implementation offers the best application
flexibility.

12

3.1.2 VMM Design Requirements and Providers

• As mentioned earlier, hardware-level virtualization inserts a layer between real hardware and
traditional operating systems. This layer is commonly called the Virtual Machine Monitor (VMM)
and it manages the hardware resources of a computing system.

• Each time programs access the hardware, the VMM captures the process. In this sense, the VMM
acts as a traditional OS. One hardware component, such as the CPU, can be virtualized as several
virtual copies. Therefore, several traditional operating systems which are the same or different
can sit on the same set of hardware simultaneously.

• There are three requirements for a VMM.

• First, a VMM should provide an environment for programs which is essentially identical to the
original machine.

• Second, programs run in this environment should show, at worst, only minor decreases in speed.

• Third, a VMM should be in complete control of the system resources. Any program run under a
VMM should exhibit a function identical to that which it runs on the original machine directly.

• Two possible exceptions in terms of differences are permitted with this requirement:

• 1) differences caused by the availability of system resources . This one arises when more than one
VM is running on the same machine. The hardware resource requirements, such as memory, of
each VM are reduced, but the sum of them is greater than that of the real machine installed.

• 2) differences caused by timing dependencies. This qualification is required because of the
intervening level of software and the effect of any other VMs concurrently existing on the same
hardware.

13

3.1.2 VMM Design Requirements and Providers

• Obviously, these two differences pertain to performance, while the
function a VMM provides stays the same as that of a real machine.

• A VMM should demonstrate efficiency in using the VMs. Compared with a
physical machine, no one prefers a VMM if its efficiency is too low.

• Traditional emulators and complete software interpreters (simulators)
emulate each instruction by means of functions or macros. Such a
method provides the most flexible solutions for VMMs. However,
emulators or simulators are too slow to be used as real machines.

• To guarantee the efficiency of a VMM, a statistically dominant subset of
the virtual processor’s instructions needs to be executed directly by the
real processor, with no software intervention by the VMM.

14

3.1.2 VMM Design Requirements and Providers

• Table 3.2 compares four hypervisors and VMMs that are in use today.

15

3.1.2 VMM Design Requirements and Providers

• Complete control of these resources by a VMM includes the following aspects:

• (1) The VMM is responsible for allocating hardware resources for programs;

• (2) It is not possible for a program to access any resource not explicitly allocated
to it;

• (3) It is possible under certain circumstances for a VMM to regain control of
resources already allocated.

• Not all processors satisfy these requirements for a VMM. A VMM is tightly
related to the architectures of processors. It is difficult to implement a VMM for
some types of processors, such as the x86. Specific limitations include the
inability to trap on some privileged instructions.

• If a processor is not designed to support virtualization primarily, it is necessary to
modify the hardware to satisfy the three requirements for a VMM. This is known
as hardware-assisted virtualization.

16

3.1.3 Virtualization Support at the OS Level

• With the help of VM technology, a new computing mode known as cloud
computing is emerging.

• Cloud computing is transforming the computing landscape by shifting the
hardware and staffing costs of managing a computational center to third parties,
just like banks.

• However, cloud computing has at least two challenges.

• The first challenge is the ability to use a variable number of physical machines
and VM instances depending on the needs of a problem. For example, a task may
need only a single CPU during some phases of execution but may need hundreds
of CPUs at other times.

• The second challenge concerns the slow operation of instantiating new VMs.
Currently, new VMs originate either as fresh boots or as replicates of a template
VM, unaware of the current application state. Therefore, to better support cloud
computing, a large amount of research and development should be done.

17

3.1.3 Virtualization Support at the OS Level

• As mentioned earlier, it is slow to initialize a hardware-level
VM because each VM creates its own image from scratch.

• In a cloud computing environment, perhaps thousands of
VMs need to be initialized simultaneously.

• Besides slow operation, storing the VM images also
becomes an issue. As a matter of fact, there is considerable
repeated content among VM images.

• Moreover, full virtualization at the hardware level also has
the disadvantages of slow performance and low density,
and the need for para-virtualization to modify the guest
OS.

• To reduce the performance overhead of hardware-level
virtualization, even hardware modification is needed.

18

3.1.3.1 Why OS-Level Virtualization?

• OS-level virtualization provides a feasible solution for these hardware-level virtualization
issues.

• Operating system virtualization inserts a virtualization layer inside an operating system to
partition a machine’s physical resources.

• It enables multiple isolated VMs within a single operating system kernel. This kind of VM is
often called a virtual execution environment (VE), Virtual Private System (VPS), or simply
container.

• From the user’s point of view, VEs look like real servers.

• This means a VE has its own set of processes, file system, user accounts, network interfaces
with IP addresses, routing tables, firewall rules, and other personal settings.

• Although VEs can be customized for different people, they share the same operating system
kernel. Therefore, OS-level virtualization is also called single-OS image virtualization.

• Figure 3.3 illustrates operating system virtualization from the point of view of a machine
stack.

19

3.1.3.1 Why OS-Level Virtualization?

20

3.1.3.2 Advantages of OS Extensions

• Compared to hardware-level virtualization, the benefits of OS extensions are
twofold:

• (1) VMs at the operating system level have minimal startup/shutdown costs, low
resource requirements, and high scalability;

• (2) for an OS-level VM, it is possible for a VM and its host environment to
synchronize state changes when necessary.

• These benefits can be achieved via two mechanisms of OS-level virtualization:

• (1) All OS-level VMs on the same physical machine share a single operating
system kernel;

• (2) the virtualization layer can be designed in a way that allows processes in VMs
to access as many resources of the host machine as possible.

• In cloud computing, the first and second benefits can be used to overcome
the defects of slow initialization of VMs at the hardware level, and being
unaware of the current application state, respectively.

21

3.1.3.3 Disadvantages of OS Extensions

• The main disadvantage of OS extensions is that all the VMs at operating system
level on a single container must have the same kind of guest operating system.
That is, although different OS-level VMs may have different operating system
distributions, they must pertain to the same operating system family.

• For example, a Windows distribution such as Windows XP cannot run on a Linux-
based container. However, users of cloud computing have various preferences.
Some prefer Windows and others prefer Linux or other operating systems.
Therefore, there is a challenge for OS-level virtualization in such cases.

• Figure 3.3 illustrates the concept of OS-level virtualization. The virtualization layer
is inserted inside the OS to partition the hardware resources for multiple VMs to
run their applications in multiple virtual environments. To implement OS-level
virtualization, isolated execution environments (VMs) should be created based on
a single OS kernel.

• Furthermore, the access requests from a VM need to be redirected to the VM’s

local resource partition on the physical machine. For example, the chroot
command in a UNIX system can create several virtual root directories
within a host OS.

22

3.1.3.4 Virtualization on Linux or Windows Platforms

• By far, most reported OS-level virtualization systems are Linux-based.
Virtualization support on the Windows-based platform is still in the
research stage. The Linux kernel offers an abstraction layer to allow
software processes to work with and operate on resources without
knowing the hardware details.

• New hardware may need a new Linux kernel to support. Therefore,
different Linux platforms use patched kernels to provide special support
for extended functionality. However, most Linux platforms are not tied to a
special kernel. In such a case, a host can run several VMs simultaneously
on the same hardware.

• Table 3.3 summarizes several examples of Oslevel virtualization tools that
have been developed in recent years. Two OS tools (Linux vServer and
OpenVZ) support Linux platforms to run other platform-based applications
through virtualization. These two OS-level tools are illustrated in Example
3.1.

• The third tool, FVM, is an attempt specifically developed for virtualization
on the Windows NT platform.

23

Example 3.1 Virtualization Support for the Linux Platform

24

3.2 VIRTUALIZATION STRUCTURES/TOOLS AND MECHANISMS

• In general, there are three typical classes of VM architecture. Figure 3.1
showed the architectures of a machine before and after virtualization.

• Before virtualization, the operating system manages the hardware. After
virtualization, a virtualization layer is inserted between the hardware and
the operating system.

• In such a case, the virtualization layer is responsible for converting
portions of the real hardware into virtual hardware. Therefore, different
operating systems such as Linux and Windows can run on the same
physical machine, simultaneously.

• Depending on the position of the virtualization layer, there are several
classes of VM architectures, namely the hypervisor architecture, para-
virtualization, and host-based virtualization.

• The hypervisor is also known as the VMM (Virtual Machine Monitor).
They both perform the same virtualization operations.

25

3.2.1 Hypervisor and Xen Architecture

• The hypervisor supports hardware-level virtualization (see Figure 3.1(b))
on devices like CPU, memory, disk and network interfaces.

• The hypervisor software sits directly between the physical hardware and
its OS.

• The hypervisor provides hyper-calls for the guest OSes and applications.

• Depending on the functionality, a hypervisor can assume a micro-kernel
architecture like the Microsoft Hyper-V. Or it can assume a monolithic
hypervisor architecture like the VMware ESX for server virtualization.

• A micro-kernel hypervisor includes only the basic and unchanging
functions (such as physical memory management and processor
scheduling). The device drivers and other changeable components are
outside the hypervisor.

• A monolithic hypervisor implements all the aforementioned functions,
including those of the device drivers. Therefore, the size of the hypervisor
code of a micro-kernel hypervisor is smaller than that of a monolithic
hypervisor.

• Essentially, a hypervisor must be able to convert physical devices into
virtual resources dedicated for the deployed VM to use.

26

3.2.1.1 The Xen Architecture

27

3.2.1.1 The Xen Architecture

• Xen is an open source hypervisor program developed by Cambridge
University.

• Xen is a microkernel hypervisor, which separates the policy from the
mechanism.

• The Xen hypervisor implements all the mechanisms, leaving the policy to
be handled by Domain 0, as shown in Figure 3.5.

• Xen does not include any device drivers natively [7]. It just provides a
mechanism by which a guest OS can have direct access to the physical
devices. As a result, the size of the Xen hypervisor is kept rather small.

• Xen provides a virtual environment located between the hardware and
the OS.

• A number of vendors are in the process of developing commercial Xen
hypervisors, among them are Citrix XenServer [62] and Oracle VM [42].

• The core components of a Xen system are the hypervisor, kernel, and
applications. The organization of the three components is important.

28

3.2.1.1 The Xen Architecture

• Like other virtualization systems, many guest Oses can run on top of the
hypervisor. However, not all guest OSes are created equal, and one in particular
controls the others.

• The guest OS, which has control ability, is called Domain 0, and the others are
called Domain U.

• Domain 0 is a privileged guest OS of Xen. It is first loaded when Xen boots without
any file system drivers being available.

• Domain 0 is designed to access hardware directly and manage devices. Therefore,
one of the responsibilities of Domain 0 is to allocate and map hardware resources
for the guest domains (Domain-U domains).

29

3.2.2 Binary Translation with Full Virtualization

• Depending on implementation technologies, hardware virtualization can be
classified into two categories:

• full virtualization and host-based virtualization.

• hypervisor and VMM approaches are considered full virtualization

• Full virtualization does not need to modify the host OS. It relies on binary
translation to trap and to virtualize the execution of certain sensitive,
non-virtualizable instructions. The guest OSes and their applications consist of
non-critical and critical instructions.

• In a host-based system, both a host OS and a guest OS are used. A virtualization
software layer is built between the host OS and guest OS.

30

3.2.2.1 Full Virtualization

• With full virtualization, noncritical instructions run on the hardware directly
while critical instructions are discovered and replaced with traps into the VMM
to be emulated by software.

• Why are only critical instructions trapped into the VMM? This is because binary
translation can incur a large performance overhead. Noncritical instructions do
not control hardware or threaten the security of the system, but critical
instructions do.

• Therefore, running noncritical instructions on hardware not only can promote
efficiency, but also can ensure system security.

31

3.2.2.2 Binary Translation of Guest OS Requests Using a VMM

• The Binary Translation was implemented by VMware and many other software
companies.

• As shown in Figure 3.6, VMware puts the VMM at Ring 0 and the guest OS at Ring 1.

• The VMM scans the instruction stream and identifies the privileged, control- and
behavior-sensitive instructions.

• When these instructions are identified, they are trapped into the VMM, which emulates
the behavior of these instructions.

• The method used in this emulation is called binary translation.

• Therefore, full virtualization combines binary translation and direct execution.

• The guest OS is completely decoupled from the underlying hardware. Consequently, the
guest OS is unaware that it is being virtualized.

• The performance of full virtualization may not be ideal, because it involves
binary translation which is rather time-consuming.

• In particular, the full virtualization of I/O-intensive applications is a really a big
challenge. Binary translation employs a code cache to store translated hot
instructions to improve performance, but it increases the cost of memory
usage.

• At the time of this writing, the performance of full virtualization on the x86
architecture is typically 80 percent to 97 percent that of the host machine.

32

3.2.2.2 Binary Translation of Guest OS Requests Using a VMM

33

3.2.2.3 Host-Based Virtualization

• An alternative VM architecture is to install a virtualization layer on top of the host
OS.

• This host OS is still responsible for managing the hardware.

• The guest OSes are installed and run on top of the virtualization layer. Dedicated
applications may run on the VMs. Certainly, some other applications can also run
with the host OS directly.

• This host-based architecture has some distinct advantages, as enumerated next.

• First, the user can install this VM architecture without modifying the host OS. The
virtualizing software can rely on the host OS to provide device drivers and other
low-level services. This will simplify the VM design and ease its deployment.

• Second, the host-based approach appeals to many host machine configurations.

• Compared to the hypervisor/VMM architecture, the performance of the host-
based architecture may also be low. When an application requests hardware
access, it involves four layers of mapping which downgrades performance
significantly. When the ISA of a guest OS is different from the ISA of the
underlying hardware, binary translation must be adopted.

• Although the host-based architecture has flexibility, the performance is too low
to be useful in practice.

34

3.2.3 Para-Virtualization with Compiler Support

• Para-virtualization needs to modify the guest operating systems.

• A para-virtualized VM provides special APIs requiring substantial OS modifications
in user applications.

• The virtualization layer can be inserted at different positions in a machine software
stack. However, para-virtualization attempts to reduce the virtualization
overhead, and thus improve performance by modifying only the guest OS kernel.

• Figure 3.7 illustrates the concept of a para-virtualized VM architecture. The guest
operating systems are para-virtualized. They are assisted by an intelligent
compiler to replace the non-virtualizable OS instructions by hypercalls as
illustrated in Figure 3.8.

• The traditional x86 processor offers four instruction execution rings: Rings 0, 1, 2,
and 3. The lower the ring number, the higher the privilege of instruction being
executed. The OS is responsible for managing the hardware and the privileged
instructions to execute at Ring 0, while user-level applications run at Ring 3.

• The best example of para-virtualization is the KVM to be described below.

35

3.2.3 Para-Virtualization with Compiler Support

36

3.2.3 Para-Virtualization with Compiler Support

• Although para-virtualization reduces the overhead, it has incurred
other problems.

• First, its compatibility and portability may be in doubt, because it
must support the unmodified OS as well.

• Second, the cost of maintaining para-virtualized OSes is high,
because they may require deep OS kernel modifications.

• Finally, the performance advantage of para-virtualization varies
greatly due to workload variations.

• Compared with full virtualization, para-virtualization is relatively
easy and more practical.

• The main problem in full virtualization is its low performance in
binary translation. To speed up binary translation is difficult.
Therefore, many virtualization products employ the para-
virtualization architecture. The popular Xen, KVM, and VMware
ESX are good examples.

37

3.2.3 Para-Virtualization with Compiler Support
KVM (Kernel-Based VM)

• KVM is a Linux para-virtualization system—a part of the Linux
version 2.6.20 kernel.

• Memory management and scheduling activities are carried-
out by the existing Linux kernel.

• The KVM does the rest, which makes it simpler than the
hypervisor that controls the entire machine.

• KVM is a hardware-assisted para-virtualization tool, which
improves performance and supports unmodified guest OSes
such as Windows, Linux, Solaris, and other UNIX variants.

38

3.2.3.3 Para-Virtualization with Compiler Support

• Unlike the full virtualization architecture which intercepts and
emulates privileged and sensitive instructions at runtime, para-
virtualization handles these instructions at compile time.

• The guest OS kernel is modified to replace the privileged and
sensitive instructions with hypercalls to the hypervisor or VMM.

• Xen assumes such a para-virtualization architecture. The guest OS
running in a guest domain may run at Ring 1 instead of at Ring 0.

• This implies that the guest OS may not be able to execute some
privileged and sensitive instructions. The privileged instructions
are implemented by hypercalls to the hypervisor.

• After replacing the instructions with hypercalls, the modified
guest OS emulates the behavior of the original guest OS.

39

Example 3.3 VMware ESX Server for Para-Virtualization

• VMware company has developed virtualization tools for desktop systems and servers as
well as virtual infrastructure for large data centers.

• ESX is a VMM or a hypervisor for bare-metal x86 symmetric multiprocessing (SMP)
servers.

• It accesses hardware resources such as I/O directly and has complete resource
management control.

• An ESX-enabled server consists of four components: a virtualization layer, a resource
manager, hardware interface components, and a service console, as shown in Figure
3.9.

• To improve performance, the ESX server employs a para-virtualization architecture in
which the VM kernel interacts directly with the hardware without involving the host OS.

• The VMM layer virtualizes the physical hardware resources such as CPU, memory,
network and disk controllers, and human interface devices.

• Every VM has its own set of virtual hardware resources. The resource manager allocates
CPU, memory disk, and network bandwidth and maps them to the virtual hardware
resource set of each VM created.

• Hardware interface components are the device drivers and the VMware ESX Server File
System.

• The service console is responsible for booting the system, initiating the execution of the
VMM and resource manager, and relinquishing control to those layers. It also facilitates
the process for system administrators.

40

Example 3.3 VMware ESX Server for Para-Virtualization

41

3.3 VIRTUALIZATION OF CPU, MEMORY, AND I/O DEVICES

• To support virtualization, processors such as the x86 employ a special
running mode and instructions, known as hardware-assisted
virtualization.

• In this way, the VMM and guest OS run in different modes and all
sensitive instructions of the guest OS and its applications are trapped in
the VMM.

• To save processor states, mode switching is completed by hardware. For
the x86 architecture, Intel and AMD have proprietary technologies for
hardware-assisted virtualization.

42

3.3.1 Hardware Support for Virtualization

• Modern operating systems and processors permit multiple processes to run simultaneously. If there
is no protection mechanism in a processor, all instructions from different processes will access the
hardware directly and cause a system crash.

• Therefore, all processors have at least two modes, user mode and supervisor mode, to ensure
controlled access of critical hardware.

• Instructions running in supervisor mode are called privileged instructions. Other instructions are
unprivileged instructions.

• In a virtualized environment, it is more difficult to make OSes and applications run correctly
because there are more layers in the machine stack. Example 3.4 discusses Intel’s hardware
support approach.

• At the time of this writing, many hardware virtualization products were available.

• The Vmware Workstation is a VM software suite for x86 and x86-64 computers. This software suite
allows users to set up multiple x86 and x86-64 virtual computers and to use one or more of these
VMs simultaneously with the host operating system. The VMware Workstation assumes the host-
based virtualization.

• Xen is a hypervisor for use in IA-32, x86-64, Itanium, and PowerPC 970 hosts. Actually, Xen modifies
Linux as the lowest and most privileged layer, or a hypervisor. One or more guest OS can run on top
of the hypervisor.

• KVM (Kernel-based Virtual Machine) is a Linux kernel virtualization infrastructure. KVM can
support hardware-assisted virtualization and para-virtualization by using the Intel VT-x or AMD-v
and VirtIO framework, respectively.

• The VirtIO framework includes a para-virtual Ethernet card, a disk I/O controller, a balloon device
for adjusting guest memory usage, and a VGA graphics interface using VMware drivers.

43

3.3.2 CPU Virtualization

• A VM is a duplicate of an existing computer system in which a majority of
the VM instructions are executed on the host processor in native mode.

• Thus, unprivileged instructions of VMs run directly on the host machine
for higher efficiency. Other critical instructions should be handled
carefully for correctness and stability.

• The critical instructions are divided into three categories: 1) privileged
instructions, 2) control-sensitive instructions, and 3) behavior-sensitive
instructions.

• Privileged instructions execute in a privileged mode and will be trapped if
executed outside this mode.

• Control-sensitive instructions attempt to change the configuration of
resources used.

• Behavior-sensitive instructions have different behaviors depending on the
configuration of resources, including the load and store operations over
the virtual memory.

44

3.3.2 CPU Virtualization

• A CPU architecture is virtualizable if it supports the ability to run the
VM’s privileged and unprivileged instructions in the CPU’s user mode
while the VMM runs in supervisor mode.

• When the privileged instructions including control- and behavior-
sensitive instructions of a VM are executed, they are trapped in the
VMM. In this case, the VMM acts as a unified mediator for hardware
access from different VMs to guarantee the correctness and stability of
the whole system.

• However, not all CPU architectures are virtualizable. RISC CPU
architectures can be naturally virtualized because all control- and
behavior-sensitive instructions are privileged instructions.

• On the contrary, x86 CPU architectures are not primarily designed to
support virtualization. This is because about 10 sensitive instructions,
such as SGDT (Store Global Descriptor Table Register) and SMSW (Store
Machine Status Word), are not privileged instructions. When these
instructions execute in virtualization, they cannot be trapped in the
VMM.

45

3.3.2 CPU Virtualization

• On a native UNIX-like system, a system call triggers the 80h interrupt and
passes control to the OS kernel. The interrupt handler in the kernel is
then invoked to process the system call.

• On a para-virtualization system such as Xen, a system call in the guest OS
first triggers the 80h interrupt normally. Almost at the same time, the
82h interrupt in the hypervisor is triggered. Incidentally, control is passed
on to the hypervisor as well.

• When the hypervisor completes its task for the guest OS system call, it
passes control back to the guest OS kernel.

• Certainly, the guest OS kernel may also invoke the hypercall while it’s
running.

• Although para-virtualization of a CPU lets unmodified applications run in
the VM, it causes a small performance penalty.

46

3.3.2.1 Hardware-Assisted CPU Virtualization

• This technique attempts to simplify virtualization because full
or para-virtualization is complicated.

• Intel and AMD add an additional mode called privilege mode
level (some people call it Ring-1) to x86 processors.

• Therefore, operating systems can still run at Ring 0 and the
hypervisor can run at Ring -1.

• All the privileged and sensitive instructions are trapped in
the hypervisor automatically.

• This technique removes the difficulty of implementing
binary translation of full virtualization.

• It also lets the operating system run in VMs without
modification.

47

3.3.3 Memory Virtualization

• Virtual memory virtualization is similar to the virtual memory support
provided by modern operating systems.

• In a traditional execution environment, the operating system maintains
mappings of virtual memory to machine memory using page tables, which is
a one-stage mapping from virtual memory to machine memory.

• All modern x86 CPUs include a memory management unit (MMU) and a
translation lookaside buffer (TLB) to optimize virtual memory performance.

• However, in a virtual execution environment, virtual memory virtualization
involves sharing the physical system memory in RAM and dynamically
allocating it to the physical memory of the VMs.

• That means a two-stage mapping process should be maintained by the guest
OS and the VMM, respectively: 1) virtual memory to physical memory and
2) physical memory to machine memory.

• Furthermore, MMU virtualization should be supported, which is transparent
to the guest OS.

• The guest OS continues to control the mapping of virtual addresses to the
physical memory addresses of VMs. But the guest OS cannot directly access
the actual machine memory.

• The VMM is responsible for mapping the guest physical memory to the
actual machine memory. Figure 3.12 shows the two-level memory mapping
procedure.

48

3.3.3 Memory Virtualization

49

3.3.3 Memory Virtualization

• Since each page table of the guest OSes has a separate page table in the VMM
corresponding to it, the VMM page table is called the shadow page table.

• Nested page tables add another layer of indirection to virtual memory. The MMU
already handles virtual-to-physical translations as defined by the OS.

• Then the physical memory addresses are translated to machine addresses using
another set of page tables defined by the hypervisor.

• Since modern operating systems maintain a set of page tables for every process,
the shadow page tables will get flooded. Consequently, the performance
overhead and cost of memory will be very high.

• VMware uses shadow page tables to perform virtual-memory-to-machine-
memory address translation.

• Processors use TLB hardware to map the virtual memory directly to the machine
memory to avoid the two levels of translation on every access.

• When the guest OS changes the virtual memory to a physical memory mapping,
the VMM updates the shadow page tables to enable a direct lookup.

50

3.3.4 I/O Virtualization

• I/O virtualization involves managing the routing of I/O requests between virtual
devices and the shared physical hardware.

• At the time of this writing, there are three ways to implement I/O virtualization:
1) full device emulation, 2) para-virtualization, and 3) direct I/O.

• Full device emulation is the first approach for I/O virtualization. Generally, this
approach emulates well-known, real-world devices.

– All the functions of a device or bus infrastructure, such as device enumeration,
identification, interrupts, and DMA, are replicated in software.

– This software is located in the VMM and acts as a virtual device. The I/O access
requests of the guest OS are trapped in the VMM which interacts with the I/O devices.
The full device emulation approach is shown in Figure 3.14.

• A single hardware device can be shared by multiple VMs that run
concurrently. However, software emulation runs much slower than the
hardware it emulates [10,15].

51

3.3.4 I/O Virtualization

52

3.3.4 I/O Virtualization

• The para-virtualization method of I/O virtualization is typically used in
Xen.

• It is also known as the split driver model consisting of a 1) frontend driver
and 2) a backend driver.

• The frontend driver is running in Domain U and the backend driver is
running in Domain 0. They interact with each other via a block of shared
memory.

• The frontend driver manages the I/O requests of the guest OSes and the
backend driver is responsible for managing the real I/O devices and
multiplexing the I/O data of different VMs.

• Although para-I/O-virtualization achieves better device performance than
full device emulation, it comes with a higher CPU overhead.

53

3.3.4 I/O Virtualization

• Direct I/O virtualization lets the VM access devices directly. It can achieve
close-to-native performance without high CPU costs. However, current
direct I/O virtualization implementations focus on networking for
mainframes.

• There are a lot of challenges for commodity hardware devices. For
example, when a physical device is reclaimed (required by workload
migration) for later reassignment, it may have been set to an arbitrary
state (e.g., DMA to some arbitrary memory locations) that can function
incorrectly or even crash the whole system.

• Since software-based I/O virtualization requires a very high overhead of
device emulation, hardware-assisted I/O virtualization is critical.

54

3.3.4 I/O Virtualization

• Another way to help I/O virtualization is via self-virtualized I/O (SV-IO)
[47].

• The key idea of SV-IO is to harness the rich resources of a multicore
processor. All tasks associated with virtualizing an I/O device are
encapsulated in SV-IO.

• It provides virtual devices and an associated access API to VMs and a
management API to the VMM.

• SV-IO defines one virtual interface (VIF) for every kind of virtualized I/O
device, such as virtual network interfaces, virtual block devices (disk),
virtual camera devices, and others.

• The guest OS interacts with the VIFs via VIF device drivers. Each VIF
consists of two message queues. One is for outgoing messages to the
devices and the other is for incoming messages from the devices. In
addition, each VIF has a unique ID for identifying it in SV-IO.

55

3.4 VIRTUAL CLUSTERS AND RESOURCE MANAGEMENT

• A physical cluster is a collection of servers (physical machines) interconnected by
a physical network such as a LAN.

• In Chapter 2, we studied various clustering techniques on physical machines. Here,
we introduce virtual clusters and study its properties as well as explore their
potential applications.

• In this section, we will study three critical design issues of virtual clusters: 1) live
migration of VMs, 2) memory and file migrations, and 3) dynamic deployment of
virtual clusters.

• When a traditional VM is initialized, the administrator needs to manually write
configuration information or specify the configuration sources. When more VMs
join a network, an inefficient configuration always causes problems with
overloading or underutilization.

• Amazon’s Elastic Compute Cloud (EC2) is a good example of a web service that
provides elastic computing power in a cloud. EC2 permits customers to create VMs
and to manage user accounts over the time of their use.

• Most virtualization platforms, including XenServer and VMware ESX Server,
support a bridging mode which allows all domains to appear on the network as
individual hosts. By using this mode, VMs can communicate with one another
freely through the virtual network interface card and configure the network
automatically.

56

3.4.1 Physical versus Virtual Clusters

• Virtual clusters are built with VMs installed at distributed servers from
one or more physical clusters.

• The VMs in a virtual cluster are interconnected logically by a virtual
network across several physical networks.

• Figure 3.18 illustrates the concepts of virtual clusters and physical clusters.
Each virtual cluster is formed with physical machines or a VM hosted by
multiple physical clusters.

57

3.4.1 Physical versus Virtual Clusters

58

3.4.1 Physical versus Virtual Clusters

• The virtual cluster boundaries are shown as distinct boundaries. The provisioning
of VMs to a virtual cluster is done dynamically to have the following interesting
properties:

– The virtual cluster nodes can be either physical or virtual machines. Multiple
VMs running with different OSes can be deployed on the same physical node.

– A VM runs with a guest OS, which is often different from the host OS, that
manages the resources in the physical machine, where the VM is
implemented.

– The purpose of using VMs is to consolidate multiple functionalities on the
same server. This will greatly enhance server utilization and application
flexibility.

– VMs can be colonized (replicated) in multiple servers for the purpose of
promoting distributed parallelism, fault tolerance, and disaster recovery.

– The size (number of nodes) of a virtual cluster can grow or shrink
dynamically, similar to the way an overlay network varies in size in a peer-to-
peer (P2P) network.

– The failure of any physical nodes may disable some VMs installed on the
failing nodes. But the failure of VMs will not pull down the host system.

59

3.4.1 Physical versus Virtual Clusters

• Since system virtualization has been widely used, it is necessary to effectively
manage VMs running on a mass of physical computing nodes (also called virtual
clusters) and consequently build a high-performance virtualized computing
environment.

• This involves virtual cluster deployment, monitoring and management over large-
scale clusters, as well as resource scheduling, load balancing, server
consolidation, fault tolerance, and other techniques.

• The different node colors in Figure 3.18 refer to different virtual clusters. In a
virtual cluster system, it is quite important to store the large number of VM images
efficiently.

60

3.4.1 Physical versus Virtual Clusters

• Figure 3.19 shows the concept of a virtual cluster based on application
partitioning or customization.

• The different colors in the figure represent the nodes in different virtual clusters.

• As a large number of VM images might be present, the most important thing is to
determine how to store those images in the system efficiently.

• There are common installations for most users or applications, such as operating
systems or user-level programming libraries. These software packages can be
preinstalled as templates (called template VMs). With these templates, users can
build their own software stacks.

• New OS instances can be copied from the template VM. User-specific components
such as programming libraries and applications can be installed to those instances.

• Three physical clusters are shown on the left side of Figure 3.18. Four virtual
clusters are created on the right, over the physical clusters.

• The physical machines are also called host systems. In contrast, the VMs are guest
systems. The host and guest systems may run with different operating systems.
Each VM can be installed on a remote server or replicated on multiple servers
belonging to the same or different physical clusters.

• The boundary of a virtual cluster can change as VM nodes are added, removed, or
migrated dynamically over time.

61

3.4.1 Physical versus Virtual Clusters

62

3.4.1.1 Fast Deployment and Effective Scheduling
Fast Deployment
• The system should have the capability of fast deployment. Here, deployment

means two things:

• 1) to construct and distribute software stacks (OS, libraries, applications) to a
physical node inside clusters as fast as possible.

• 2) to quickly switch runtime environments from one user’s virtual cluster to
another user’s virtual cluster. If one user finishes using his system, the
corresponding virtual cluster should shut down or suspend quickly to save the
resources to run other VMs for other users.

63

3.4.1.1 Fast Deployment and Effective Scheduling
Effective Scheduling
• The concept of “green computing” has attracted much attention recently. However,

previous approaches have focused on saving the energy cost of components in a
single workstation without a global vision. Consequently, they do not necessarily
reduce the power consumption of the whole cluster.

• The live migration of VMs allows workloads of one node to transfer to another node.
However, it does not guarantee that VMs can randomly migrate among themselves. In
fact, the potential overhead caused by live migrations of VMs cannot be ignored.

• The overhead may have serious negative effects on cluster utilization, throughput,
and QoS issues.

• Therefore, the challenge is to determine how to design migration strategies to
implement green computing without influencing the performance of clusters.

• Another advantage of virtualization is load balancing of applications in a virtual cluster.
Load balancing can be achieved using the load index and frequency of user logins.

• The automatic scale-up and scale-down mechanism of a virtual cluster can be
implemented based on this model. Consequently, we can increase the resource
utilization of nodes and shorten the response time of systems.

• Mapping VMs onto the most appropriate physical node should promote performance.
Dynamically adjusting loads among nodes by live migration of VMs is desired, when the
loads on cluster nodes become quite unbalanced.

64

3.4.1.2 High-Performance Virtual Storage

• A template is a disk image that includes a preinstalled operating system with or without
certain application software.

• The template VM can be distributed to several physical hosts in the cluster to customize the
VMs.

• In addition, existing software packages reduce the time for customization.

• It is important to efficiently manage the disk spaces occupied by template software

packages. Some storage architecture design can be applied to reduce duplicated blocks in a
distributed file system of virtual clusters. Hash values are used to compare the contents of
data blocks.

• Basically, there are four steps to deploy a group of VMs onto a target cluster: 1) preparing
the disk image, 2) configuring the VMs, 3) choosing the destination nodes, and 4) executing
the VM deployment command on every host.

• Users choose a proper template according to their requirements and make a duplicate of it as
their own disk image.

• Templates could implement the COW (Copy on Write) format. A new COW backup file is
very small and easy to create and transfer. Therefore, it definitely reduces disk space
consumption.

• In addition, VM deployment time is much shorter than that of copying the whole raw image
file.

65

3.4.1.2 High-Performance Virtual Storage

• Every VM is configured with a name, disk image, network setting, and allocated
CPU and memory.

• One needs to record each VM configuration into a file. However, this method is
inefficient when managing a large group of VMs.

• VMs with the same configurations could use pre-edited profiles to simplify the
process. In this scenario, the system configures the VMs according to the chosen
profile.

• A strategy to choose the proper destination host for any VM is needed. The
deployment principle is to fulfill the VM requirement and to balance workloads
among the whole host network.

66

3.4.2 Live VM Migration Steps and Performance Effects

• When a VM fails, its role could be replaced by another VM on a different
node.

• This is different from physical-to-physical failover in a traditional physical
cluster. The advantage is enhanced failover flexibility.

• The potential drawback is that a VM must stop playing its role if its
residing host node fails. However, this problem can be mitigated with VM
life migration.

67

3.4.2 Live VM Migration Steps and Performance Effects

• There are four ways to manage a virtual cluster.

• First, you can use a guest-based manager, by which the cluster manager resides on a
guest system. In this case, multiple VMs form a virtual cluster.

• For example, openMosix is an open source Linux cluster running different guest systems
on top of the Xen hypervisor.

• Another example is Sun’s cluster Oasis, an experimental Solaris cluster of VMs
supported by a VMware VMM.

• Second, you can build a cluster manager on the host systems. The host-based manager
supervises the guest systems and can restart the guest system on another physical
machine.

• A good example is the VMware HA system that can restart a guest system after failure.

• These two cluster management systems are either guest-only or host-only, but they do
not mix.

• A third way to manage a virtual cluster is to use an independent cluster manager on
both the host and guest systems. This will make infrastructure management more
complex.

• Finally, you can use an integrated cluster on the guest and host systems. This means
the manager must be designed to distinguish between virtualized resources and
physical resources.

 68

3.4.2 Live VM Migration Steps and Performance Effects

• Various cluster management schemes can be greatly enhanced when VM
life migration is enabled with minimal overhead.

• VMs can be live-migrated from one physical machine to another; in case of
failure, one VM can be replaced by another VM.

• The major attraction of this scenario is that virtual clustering provides
dynamic resources that can be quickly put together upon user demand or
after a node failure.

• When a VM runs a live service, it is necessary to make a trade-off to
ensure that the migration occurs in a manner that minimizes all three
metrics. The motivation is to design a live VM migration scheme with
negligible downtime, the lowest network bandwidth consumption, and a
reasonable total migration time.

69

3.4.2 Live VM Migration Steps and Performance Effects

• A VM can be in one of the following four states:

• An inactive state is defined by the virtualization platform, under which the
VM is not enabled.

• An active state refers to a VM that has been instantiated at the virtualization
platform to perform a real task.

• A paused state corresponds to a VM that has been instantiated but disabled to
process a task or paused in a waiting state.

• A VM enters the suspended state if its machine file and virtual resources are
stored back to the disk.

70

3.4.2 Live VM Migration Steps and Performance Effects

71

3.4.2 Live VM Migration Steps and Performance Effects

As shown in Figure 3.20, live migration of a VM consists of the following six
steps:

• Steps 0 and 1: Start migration. This step makes preparations for the
migration, including determining the migrating VM and the destination
host. Although users could manually make a VM migrate to an appointed
host, in most circumstances, the migration is automatically started by
strategies such as load balancing and server consolidation.

• Steps 2: Transfer memory. Since the whole execution state of the VM is
stored in memory, sending the VM’s memory to the destination node
ensures continuity of the service provided by the VM. All of the memory
data is transferred in the first round, and then the migration controller
recopies the memory data which is changed in the last round. These steps
keep iterating until the dirty portion of the memory is small enough to
handle the final copy. Although precopying memory is performed
iteratively, the execution of programs is not obviously interrupted.

72

3.4.2 Live VM Migration Steps and Performance Effects

• Step 3: Suspend the VM and copy the last portion of the data. The
migrating VM’s execution is suspended when the last round’s memory
data is transferred. Other nonmemory data such as CPU and network
states should be sent as well. During this step, the VM is stopped and its
applications will no longer run. This “service unavailable” time is called the
“downtime” of migration, which should be as short as possible so that it
can be negligible to users.

• Steps 4 and 5: Commit and activate the new host. After all the needed
data is copied, on the destination host, the VM reloads the states and
recovers the execution of programs in it, and the service provided by this
VM continues. Then the network connection is redirected to the new VM
and the dependency to the source host is cleared. The whole migration
process finishes by removing the original VM from the source host.

73

3.4.2 Live VM Migration Steps and Performance Effects

• Figure 3.21 shows the effect on the data transmission rate (Mbit/second)
of live migration of a VM from one host to another. Before copying the VM
with 512 KB files for 100 clients, the data throughput was 870 MB/second.

• The first precopy takes 63 seconds, during which the rate is reduced to
765 MB/second. Then the data rate reduces to 694 MB/second in 9.8
seconds for more iterations of the copying process.

• The system experiences only 165 ms of downtime, before the VM is
restored at the destination host. This experimental result shows a very
small migration overhead in live transfer of a VM between host nodes.
This is critical to achieve dynamic cluster reconfiguration and disaster
recovery as needed in cloud computing.

74

3.4.2 Live VM Migration Steps and Performance Effects

75

3.4.2 Live VM Migration Steps and Performance Effects
Alternative Approaches
• In the pre-copy phase, although a VM service is still available, much

performance degradation will occur because the migration daemon
continually consumes network bandwidth to transfer dirty pages in each
round. Moreover, the maximum number of iterations must be set because
not all applications’ dirty pages are ensured to converge to a small
writable working set over multiple rounds. In fact, these issues with the
pre-copy approach are caused by the large amount of transferred data
during the whole migration process.

• A checkpointing/recovery and trace/replay approach (CR/ TR-Motion) is
proposed to provide fast VM migration. This approach transfers the
execution trace file in iterations rather than dirty pages, which is logged
by a trace daemon. Apparently, the total size of all log files is much less
than that of dirty pages. The total migration time and downtime of
migration are drastically reduced. However, CR/TR-Motion is valid only
when the log replay rate is larger than the log growth rate.

76

3.4.2 Live VM Migration Steps and Performance Effects
Alternative Approaches
• Another strategy of post-copy is introduced for live migration of VMs.

Here, all memory pages are transferred only once during the whole
migration process and the baseline total migration time is reduced. But
the downtime is much higher than that of pre-copy due to the latency of
fetching pages from the source node before the VM can be resumed on
the target. With the advent of multicore or many-core machines,
abundant CPU resources are available. Even if several VMs reside on a
same multicore machine, CPU resources are still rich because physical
CPUs are frequently amenable to multiplexing.

• We can exploit these copious CPU resources to compress page frames and
the amount of transferred data can be significantly reduced. Memory
compression algorithms typically have little memory overhead.
Decompression is simple and very fast and requires no memory for
decompression.

77

3.4.3 Migration of Memory, Files, and Network Resources
3.4.3.1 Memory Migration:

• Memory migration is one of the most important aspects of VM migration. Moving the
memory instance of a VM from one physical host to another can be approached in any
number of ways.

• Memory migration can be in a range of hundreds of megabytes to a few gigabytes in a
typical system today, and it needs to be done in an efficient manner.

• The Internet Suspend-Resume (ISR) technique deals with situations where the

migration of live machines is not a necessity (Cold Migration).

• Predictably, the downtime (the period during which the service is unavailable due to
there being no currently executing instance of a VM) is high.

• The ISR technique exploits temporal locality as memory states are likely to have
considerable overlap in the suspended and the resumed instances of a VM.

• Temporal locality refers to the fact that the memory states differ only by the amount of
work done since a VM was last suspended before being initiated for migration.

• To exploit temporal locality, each file in the file system is represented as a tree of small
sub-files. A copy of this tree exists in both the suspended and resumed VM instances.

• The advantage of using a tree-based representation of files is that the caching ensures
the transmission of only those files which have been changed.

• . 78

3.4.3 Migration of Memory, Files, and Network Resources
3.4.3.2 File System Migration

• To support VM migration, a system must provide each VM with a consistent, location-
independent view of the file system that is available on all hosts.

• 1) each VM with its own virtual disk which the file system is mapped to and transport
the contents of this virtual disk along with the other states of the VM.

• VMM only accesses its local file system. The relevant VM files are explicitly copied
into the local file system for a resume operation and taken out of the local file system
for a suspend operation.

• VMM has to store the contents of each VM’s virtual disks in its local files, which have
to be moved around with the other state information of that VM.

• 2) Another way is to have a global file system (Distributed file system) across all
machines where a VM could be located. This way removes the need to copy files from
one machine to another because all files are network accessible. A distributed file
system is used in ISR serving as a transport mechanism for propagating a suspended
VM state.

 79

3.4.3 Migration of Memory, Files, and Network Resources
3.4.3.2 File System Migration

• In smart copying, the VMM exploits spatial locality.

• Typically, people often move between the same small number of locations,
such as their home and office. In these conditions, it is possible to transmit
only the difference between the two file systems at suspending and resuming
locations.

• This technique significantly reduces the amount of actual physical data that
has to be moved. In situations where there is no locality to exploit, a different
approach is to synthesize much of the state at the resuming site.

• On many systems, user files only form a small fraction of the actual data on
disk. Operating system and application software use the majority of storage
space.

80

3.4.3 Migration of Memory, Files, and Network Resources
3.4.3.3 Network Migration

• A migrating VM should maintain all open network connections without relying on
forwarding mechanisms on the original host or on support from mobility or
redirection mechanisms.

• To enable remote systems to locate and communicate with a VM, each VM must
be assigned a virtual IP address known to other entities. This address can be
distinct from the IP address of the host machine where the VM is currently
located.

• Each VM can also have its own distinct virtual MAC address. The VMM maintains
a mapping of the virtual IP and MAC addresses to their corresponding VMs.

• If the source and destination machines of a VM migration are typically connected
to a single switched LAN, an ARP reply from the migrating host is provided
advertising that the IP has moved to a new location. This solves the open network
connection problem by reconfiguring all the peers to send future packets to a new
location. Although a few packets that have already been transmitted might be
lost, there are no other problems with this mechanism.

• Alternatively, on a switched network, the migrating OS can keep its original
Ethernet MAC address and rely on the network switch to detect its move to a
new port.

81

