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Abstract. In geotechnical engineering, the accurate estimation of fundamental soil properties, 
such as the shear modulus ratio (𝐺/𝐺୫ୟ୶)  and damping ratio (𝐷),  is crucial to design and 
analyze various structures subjected to dynamic loads. This study presents a comprehensive 
investigation on harnessing the power of machine learning techniques to precisely predict 
𝐺/𝐺୫ୟ୶ and 𝐷 of granular soils. Using an extensive dataset gathered from cyclic triaxial and 
resonant column tests on diverse mixtures of sand and gravel, combined with previous research 
findings, a series of advanced machine learning algorithms including shallow neural networks, 
support vector regression, gradient boosting regression, and deep feed forward neural network 
(DFFNN) were developed. The proposed models elucidate various influential parameters, 
including the grading characteristics, void ratio, confining pressure, consolidation stress ratio, 
and specimen preparation techniques. The superiority of the DFFNN model in terms of accuracy 
and predictive performance was demonstrated through rigorous evaluation and comparison. This 
study contributes to a better understanding of soil behavior under dynamic conditions. It also 
provides a robust framework to employ machine learning in predicting 𝐺/𝐺୫ୟ୶  and 𝐷  of 
granular soils, thereby enhancing the efficiency and reliability of geotechnical designs and 
construction practices. 

1. Introduction 
This section emphasizes the importance of understanding the dynamic behavior of geomaterials, 
particularly granular soils, in designing safe structures. Two key parameters, the shear modulus ratio 
(𝐺/𝐺୫ୟ୶) and damping ratio (𝐷), are considered crucial for characterizing the dynamic response of 
these soils [1–4]. Complex testing methods are used to determine the dynamic soil properties. Integrating 
artificial intelligence (AI) and machine learning (ML), particularly deep learning (DL), into geotechnical 
engineering has been introduced as a transformative development. 

ML, a subfield of AI, is described as a field that enables machines to learn from data and make 
predictions, thereby revolutionizing various engineering disciplines. Different ML methods, such as 
supervised, unsupervised, semi-supervised, and reinforcement learning methods, are briefly explained 
in references [5–7]. 
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DL, a subset of ML, has been highlighted for its ability to process large datasets with high-
dimensional features and the potential of artificial neural networks (ANNs) for modeling data is 
discussed. The application of ML in geotechnical engineering is considered innovative because it 
enables accurate analysis and prediction of soil behavior, foundation performance, and slope stability 
[8–10]. 

Previous studies focused on classifying soils, estimating the dynamic properties of soils, and 
predicting the shear strength. This study discusses the use of various ML methods, including ANNs, 
support vector regression (SVR), and gradient boosting regression (GBR), for different geotechnical 
applications and demonstrates their effectiveness in producing accurate predictions. 

This study investigates the influence of several factors on the dynamic properties of sand-gravel 
mixtures and compares the prediction performance of the deep feed forward neural network (DFFNN) 
model with that of other ML models. A dataset of 118 curves was used for training and testing, and 
sensitivity analysis was performed to evaluate the importance of the input parameters. 

2. Machine learning models 
This section provides an overview of the machine-learning models, including ANN, SVR, and GBR. 
 
2.1. ANNs and deep feed forward neural networks 
ANNs have been applied in geotechnical engineering to classify soils, predict slope stability, and assess 
risks. They consist of interconnected layers of neurons, including the input, output, and hidden layers. 
DFFNNs were introduced as variants of ANNs that are designed to address the limitations of slow 
convergence rates and overfitting [11–13]. DFFNNs can effectively learn and represent complex data 
patterns and relationships. They comprise feed-forward and backpropagation stages, and often include 
dropout and batch normalization (BN) layers to prevent overfitting and expedite training, respectively. 
Activation and loss functions having various available options are used in DFFNNs. DFFNNs aim to 
convert input data into desired outputs by accommodating both linear and nonlinear relationships. 
 
2.2. SVR 
SVR is a technique derived from a support vector machine (SVM) that was initially designed for 
classification but has found applications in regression tasks. SVR employs a mapping function to 
transform input variables into a higher-dimensional feature space, where linear regression is performed. 
The goal of SVR is to determine a function that approximates the output values with a satisfactory level 
of precision. The SVR model is based on weight vectors, bias, and independent observations [14–16]. 
 
2.3. GBR 
GBR, which is an ensemble ML technique, addresses regression challenges. It utilizes multiple decision 
trees in its framework and progressively reduces the residuals in each ensemble tree, thereby iteratively 
enhancing the model [17,18]. GBR operates on a boosting methodology using a collection of high-bias 
and low-variance models to simultaneously reduce bias and maintain low variance [19,20]. Each 
decision tree partitions the input space into separate regions and assigns constant values to each region. 
The model aims to minimize the loss function using various available options, such as the Huber loss 
function, absolute error, squared error, and mean squared error (MSE). In this study, MSE was chosen 
as the loss function. 
 
2.4. Developed DFFNN model 
A DFFNN model was designed in this study using the Keras library in Python to extract desired features 
and predict 𝐺/𝐺୫ୟ୶ and 𝐷 values of granular soils based on their physical and geotechnical properties. 
The architecture of the DFFNN model comprises six fully connected (FC) layer blocks, the design of 
which is detailed in table 1. 
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Table 1. Details of the proposed architecture model. 

Type of layer 
Activation 

function 
 

Number of 

neurons 
 

Outputs 

FC Relu 30 (None, 30) 

FC Relu 20 (None, 20) 

FC Relu 15 (None, 15) 

FC Relu 10 (None, 10) 

FC Relu 5 (None, 5) 

FC Linear 2 (None, 2) 

 

The DFFNN model architecture is as follows: 
1. A dropout layer, 
2. An FC layer with a rectified linear unit (Relu) activation function and batch normalization 

(BN) layer, 
3. The architecture of the previous stage was repeated four more times and, 
4. The output of the previous architecture was connected to the FC layer to calculate the outputs. 

The hyperparameters of the DFFNN model were adjusted to improve the optimal convergence rate. 
The training procedure was completed with a batch size of 100 and learning rate of 0.001. A Nadam 
optimizer was employed in the DFFNN model to iteratively adjust the network parameters and minimize 
the loss function. 

The loss function used in the model comprised the sum of the MSE term and a regularization term, 
which was defined as the L1- and L2-norms of the network weights, denoted as 𝜆ଵ and 𝜆ଶ, respectively. 
These hyperparameters were used to control the complexity of the model. Table 2 lists the ideal 
hyperparameters for the proposed DFFNN model. 

This model was developed to accurately predict the 𝐺/𝐺୫ୟ୶ and 𝐷 values of granular soils based on 
the input data, and hyperparameter tuning was aimed at optimizing the performance and convergence 
of the model. 

In this study, 2,844 samples were analyzed. To train and evaluate the proposed model, the dataset 
was divided as follows: 

1. 70% (1,991 samples) were allocated for training. 
2. 10% (284 samples) were used for validation. 
3. 20% (569 samples) were used for testing. 

The input parameters were normalized to ensure that the data had consistent scales, which is a critical 
step in modeling, particularly when the inputs have varying scales. Z-score normalization was chosen 
for stability, even in the presence of outliers. This technique involves dividing the value by standard 
deviation (𝜎) after subtracting the mean (𝜇). The scaled value (𝑍) was related to the original value (𝑋) 
through the following equation: 

𝑍 = (𝑋 − 𝜇)/𝜎 (1) 

This normalization process was applied to the training dataset and the same scale ( 𝜇 and 𝜎 ) was 
used to normalize the testing dataset. This approach facilitates model generalization and domain 
adaptation. 

Domain adaptation is a challenging problem, particularly when predicting samples from a different 
working environment (target domain) using a model trained on samples from another environment 
(source domain). This is commonly referred to as a domain-adaptation problem. Normalizing the 
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datasets ensures that the model can adapt to different domains and make accurate predictions even when 
the source and target domains differ. 

 
Table 2. Optimal hyperparameters employed for the developed DFFNN model. 

Hyper-Parameters Search space Optimal value 

Optimizer RMSProp, Adam, SGD, Nadam Nadam 

Learning Rate 0.01,0.001,0.0001 0.001 

The number of FC layers 2,6,8,10 6 

Activation function in the hidden FC layers Relu, Leaky-Relu, Logsig, Tansig Relu 

No. neurons in the first FC layer 30,20,15,10,5 30 

No. neurons in the second FC layer 30,20,15,10,5 20 

No. neurons in the third FC layer 30,20,15,10,5 15 

No. neurons in the fourth FC layer 30,20,15,10,5 10 

No. neurons in the fifth FC layer 30,20,15,10,5 5 

Batch Size 4,8,10,16,32,64,100 100 

Dropout Ratio 0,0.2,0.3,0.4,0.5 0.2 

𝜆ଵ and 𝜆ଶ 0.1,0.01,0.001 0.01 

 

2.5. Performance evaluation 
The performance of the models was evaluated to assess their predictive accuracy. Two key statistical 
metrics were used, namely Rଶ and MAE. The Rଶ indicates the relationship between the observed and 
predicted values and MAE quantifies the average absolute difference between the observed and 
predicted values. A model with Rଶ and MAE values of 1 and 0, respectively, is considered to be ideal. 
These metrics were used to gauge the proficiency and accuracy of the constructed models. 
 
3. Dataset collection 
A comprehensive series of resonant column (RC) and cyclic triaxial (CT) tests were performed in this 
study to investigate the dynamic properties of soils. These tests aimed to provide a detailed 
understanding of the behavior of soil specimens under varying conditions and shear strain amplitudes. 
The specific details of these tests and materials are as follows. 

To investigate the impact of various factors on the dynamic properties of soils, a set of RC and CT 
tests was conducted on reconstituted specimens of sand-gravel mixtures. The parameters considered 
included gravel content, relative density, mean confining pressure, consolidation stress ratio, and the 
method used to prepare the specimens. The sand used in this study was clean, finely graded had minimal 
silt content, and classified as poorly graded sand (SP) according to the unified soil classification system 
(USCS). In contrast, the gravel material was uniformly graded with particle sizes ranging from 15 mm 
to 4.75 mm. Five groups of granular soil with different gravel contents were used. Figure 1 shows the 
grain size distribution curves. 
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Figure 1. Grain size distribution curves. 
To prepare the soil specimens for the RC and CT tests, cylindrical specimens measuring 10 cm and 

20 cm in diameter and height, respectively, were carefully created using wet tamping, air pluviation, 
and water sedimentation techniques. The experimental procedures and methodologies for specimen 
preparation are described in detail by Bayat and Ghalandarzadeh [4]. 

RC and CT testing apparatuses were used to assess the dynamic characteristics over a range of shear-
strain amplitudes. These devices allow the application of consolidation stress during the consolidation 
phase, accommodating both isotropic and anisotropic stress conditions. Anisotropic stress was applied 
using the consolidation stress ratio (ratio of lateral to axial effective consolidation stress). CT tests 
focused on dynamic properties within moderate to substantial shear strain amplitudes, typically ranging 
from 10∧ିସ to 10∧ିଶ. RC tests, on the other hand, characterize the dynamic properties within the lower 
to intermediate shear-strain amplitude range, spanning approximately 10∧ି଺ to 10∧ିସ. 

The CT experiments followed the ASTM D-3999 guidelines. In this study, linear variable differential 
transducers (LVDTs) were attached to opposing sides of the triaxial specimens to monitor the average 
local axial strain. The loading phase included consistent cyclic shear-stress amplitudes that progressively 
increased. Each loading stage consisted of 40 loading cycles with uniform sinusoidal waveforms at a 
constant frequency of 1 Hz for the cyclic axial loading. The tests were performed under undrained 
conditions, with the excess pore water pressure dissipated before each loading phase. A detailed analysis 
of the hysteresis loop was performed at the tenth cycle within each stage to determine the values of 𝐺 
and 𝐷. G was calculated as the slope of the secant line connecting the hysteresis loop extremities, 
whereas D was computed based on the ratio of the energy dissipated during the loading cycle to the 
maximum strain energy stored throughout the cycle. 

 A free-free RC apparatus was used to assess small shear-strains in the range of 10∧ି଺ to 10∧ିସ. This 
apparatus induces torsional excitation to initiate the vibration of a cylindrical specimen, and enables 
rotational resonant frequency determination. The precision of the RC apparatus was established through 
a calibration process using aluminum calibration bars. The free-free resonant frequency method, known 
for its simplicity and utility among researchers, was adopted to measure the small-strain dynamic 
properties. 
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In the current study, a series of RC and CT tests was done to study the effects of gravel content (GC), 
mean effective confining pressure ( 𝜎௠

ᇱ ), void ratio (𝑒) , anisotropic consolidation ratio (𝐾௖), and 
Specimens' Preparation (S-P) technique on the 𝐺/𝐺୫ୟ୶ − 𝛾 and 𝐷 − 𝛾 curves of sand-gravel mixtures. 
These parameters have important effects on the dynamic properties of granular materials. 
 
4. Results and discussion 
 
4.1. Performance of the proposed method in predicting 𝐺/𝐺௠௔௫ and 𝐷 
The performance of the developed DFFNN model in predicting the combined outputs (𝐺/𝐺୫ୟ୶ or 𝐷 ) 
was assessed by monitoring the variation in accuracy 𝑅ଶ and MSE with respect to the number of training 
iterations on both the training and validation datasets, as shown in figure 2. 

 

Figure. 2. Variation of 𝑅ଶ and loss of the developed DFFNN model with respect to the number of 
iterations on training and validation datasets. 

 
By the 600th  iteration, the accuracy of the developed DFFNN model reached a steady state with an 

impressive value of approximately 98%. Simultaneously, the loss of the model decreased significantly 
from 0.21 to 0.0025, indicating improved performance of the model. 

A comparison of the 𝑅ଶ and MAE of both the output parameters (𝐺/𝐺୫ୟ୶ and 𝐷), for the predictions 
of the developed DFFNN model across the training, validation, and testing datasets is presented in table 
3. 

For the testing data, the DFFNN model achieved values of 0.9830 and 0.9396 for 𝐺/𝐺୫ୟ୶ and 𝐷, 
respectively, and MAE values of 0.0164 and 0.0069 for 𝐺/𝐺୫ୟ୶ and 𝐷, respectively. These results 
demonstrate that the model can effectively predict both the output parameters simultaneously with a 
relatively high level of accuracy, making it a valuable tool for geotechnical engineering applications. 
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Table 3. Comparison of 𝑅ଶ and MAE of the developed DFFNN model for predicting both the output 
parameters based on training, validation, and testing datasets. 

Output Dataset Mean Absolute Error (MAE) Correlation Coefficient (𝐑ଶ) 

 Training 0.0063 0.9716 

𝐷 Validation 0.0075 0.9618 

Testing 0.0069 0.9396 

Training 0.0131 0.9852 

𝐺/𝐺୫ୟ୶ Validation 0.0165 0.9816 

Testing 0.0164 0.9830 

Training 0.0099 0.9868 

Combined outputs Validation 0.0120 0.9818 

Testing 0.0114 0.9820 

 

Figure 3 shows the predicted values of 𝐺/𝐺୫ୟ୶ and 𝐷 from the DFFNN model plotted against the 
measured values for these parameters based on training, validation, and testing datasets. The results 
demonstrate the accuracy of the model in predicting geotechnical properties. 

Figure 3(a) shows that the DFFNN model can accurately predict 𝐺/𝐺୫ୟ୶ and 𝐷 for granular soils 
using the training dataset and achieve high determination correlation coefficient 𝑅ଶ  of 0.9852 for 
𝐺/𝐺୫ୟ୶ and 0.9716 for 𝐷. The MAE values were 0.0131 for 𝐺/𝐺୫ୟ୶ and 0.0063 for 𝐷, which indicates 
excellent predictive performance for this dataset that contains 1,991 data points. 

When the trained DFFNN model was applied to predict 𝐺/𝐺୫ୟ୶ and D in the validation (284 data 
points) and testing datasets (569 data points), it continued to exhibit high accuracy for 𝐺/𝐺୫ୟ୶ 
prediction, as reflected in the correlation coefficients (𝑅ଶ = 0.9816 for the validation dataset and =
0.9830 for the testing dataset) and the corresponding MAE values (0.0165 for the validation dataset and 
0.0164 for the testing dataset). The model showed moderate accuracy in predicting 𝐷, with correlation 
coefficients 𝑅ଶ of 0.9618 for the validation dataset and 0.9396 for the testing dataset, along with 
corresponding MAE values of 0.0075 and 0.0069, respectively. 

The developed DFFNN model demonstrated consistent and accurate performance in predicting 
𝐺/𝐺୫ୟ୶ across different datasets and the predicted data closely aligned with the line of equity (1:1 line). 
The majority of data points were within the 20% error range. 

Figure 4 illustrates the residual errors of the DFFNN model between the measured and predicted 
values of 𝐺/𝐺୫ୟ୶ and 𝐷 for the training, validation, and testing datasets. Residual errors represent the 
differences between the measured and predicted values. It is evident that the frequency of the residual 
errors near zero is high, indicating that the model makes accurate predictions. 

The mean values (𝜇) and standard deviations (𝜎) of 𝐺/𝐺୫ୟ୶ and 𝐷 for the testing dataset are also 
depicted in figure 4. For 𝐺/𝐺୫ୟ୶ , the mean value and standard deviation is -0.0016 and 0.0348, 
respectively. For D, the mean value and standard deviation is -0.0003 and0.0127, respectively. These 
low standard deviations demonstrate the ability of the model to predict 𝐺/𝐺୫ୟ୶ and 𝐷 of granular soils 
with precision and reliability. 
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Figure 3. Measured and predicted results of the training, validation and testing datasets for 
performance evaluation of the developed DFFNN model in predicting (a) Normalized shear modulus 

(b) Damping ratio. 
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(a) 

 

(b) 

Figure 4. Distribution of the residual errors for the developed DFFNN model for (a) Normalized shear 
modulus (b) Damping ratio. 
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Figure 5 depicts a comparative analysis of the measured and predicted values of 𝐺/𝐺୫ୟ୶ and 𝐷 using 
the developed DFFNN model across the training, validation, and testing datasets. This comparison helps 
assess the performance of the model across different datasets, and it is clear from the figure that the 
DFFNN model consistently provides accurate predictions and the predicted values closely match the 
measured values. 

Figure 6 illustrates the measured and predicted 𝐺/𝐺୫ୟ୶ − 𝛾  and 𝐷 − 𝛾  curves for specific soil 
specimens under different conditions. Figure 6(a) displays the measured and predicted 𝐺/𝐺୫ୟ୶ − 𝛾 and 
𝐷 − 𝛾 curves for pure sand specimens with 𝐷௥ = 10% under mean confining pressure levels of 100,300 
kPa and 600 kPa. These curves serve as an example of the overall results and show how the measured 
and predicted values of 𝐺/𝐺୫ୟ୶ − 𝛾 and 𝐷 − 𝛾 vary with shear-strain levels. The results indicate that 
the predicted values for both parameters at shear-strain levels greater than 10∧ିଶ are more accurate than 
those at smaller strain levels. This can be attributed to errors in measuring the dynamic parameters at 
small strain levels, which are inherent to measurement devices operating within this range. 
Understanding the soil behavior at small strain levels is essential for the foundation design and 
construction methods and for predicting the settlement and structural response to minor ground 
vibrations. At medium strain levels, dynamic parameters are crucial for assessing the soil liquefaction 
potential during moderate seismic events. These parameters are also indispensable for predicting soil 
failure and deformation during major seismic events at large strain levels. 

However, it is important to note that measuring the soil dynamic parameters using tests such as RC 
and CT can introduce errors and uncertainties into the results. The magnitude of these errors depends 
on various factors, including the specific test method, equipment, soil conditions, and operator 
experience. However, tests conducted at smaller strain levels, particularly in the small-to-medium strain 
regime, tended to exhibit a higher degree of measurement error than tests at moderate-to-large strain 
levels. This suggests that obtaining precise measurements in the lower strain regime can be more 
challenging, potentially contributing to errors in predicting soil dynamic parameters at strain levels 
smaller than 10∧ିଶ. 

The results from the developed DFFNN model highlight its effectiveness in predicting soil dynamic 
parameters with high accuracy, particularly in granular soils and their behavior at different strain levels. 

 
4.2. Shallow neural network (SNN) model 
The SNN model was configured with 30-neurons in a hidden FC layer. The model parameters were 
systematically fine-tuned using an iterative trial-and-error approach to enhance convergence. Training 
used MSE as the cost function, which is a common choice in previous studies [78-80]. Network 
optimization was performed using the RMSProp optimizer with a learning rate of 0.001, batch size of 
100, and maximum of 100 training epochs. The hidden FC layer featured a sigmoid activation function, 
whereas the last layer used a linear activation function. 
 
4.3. SVR model 
The SVR hyperparameters encompass parameters like the regularization parameter (C), error sensitivity 
parameter (𝜀), standard deviation (𝜎), and choice of kernel function. In this study, the gaussian radial 
basis function (RBF) was employed as the kernel function in SVR and they were fine-tuned using a grid 
search technique [21]. Initially, the hyperparameters C, 𝜀, and 𝜎 were assigned a range of values as 
follows: C  values of 0.1,1,10,100,1000 ; 𝜀  values of 0.001,0.01,0.1 , 1; and 𝜎  values of 
1,0.1,0.01,0.001,0.0001 . However, using the grid search technique, the optimal values for these 
hyperparameters were determined as 100 for C, 0.01 for 𝜀, and 1 for 𝜎. 
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Figure 5. Measured values versus DFFNN predicted values for (a) Normalized shear modulus (b) 
Damping ratio. 
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Figure 6. Measured values versus the predicted values of the normalized shear modulus and damping 
ratio (for testing dataset) by the DFFNN model, (a) GC = 0%, 𝐷௥ = 10%, (b) 𝜎௠

ᇱ = 100 kPa, 𝐷௥ =
60%. 

4.4. GBR model 
The hyperparameters of the GBR model were meticulously adjusted to optimize the convergence rate. 
The optimal settings for the GBR model, including the learning rate, number of trees, loss function, and 
maximum depth, were determined as 0.01,1300, MSE, and 21, respectively. 

The Keras library in Python was used to implement the SNN, SVR, and GBR models. Their 
performances, evaluated on the testing dataset using all input parameters, are summarized in table 4 and 

(b) 
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visually compared in figure 7. The results achieved by the proposed DFFNN model are highlighted in 
bold in table 4. According to the results, for predicting 𝐺/𝐺୫ୟ୶, the DFFNN attained a 𝑅ଶ and MAE 
values of 0.9830 and 0.0164, respectively. In comparison, the respective 𝑅ଶ and MAE values attained 
by GBR, SVR, and SNN are 0.9746 and 0.0761, 0.9162 and 0.0664, and 0.9173 and 0.0599, respectively. 
To predict D, the DFFNN delivered 0.9396 for Rଶ and 0.0069 for MAE. In contrast, GBR yielded 0.9195 
and 0.0083, SVR yielded 0.8568 and 0.0192, and SNN yielded 0.8416 and 0.0158, respectively. 

These results highlight the superior prediction performance of the DFFNN, primarily because of its 
architectural capacity to automatically extract valuable features from input parameters. In addition, the 
GBR demonstrated strong performance, whereas the DFFNN and GBR excel in output prediction, SVR 

SNN offers comparable performance. When comparing their accuracy in predicting 𝐺/𝐺୫ୟ୶ and 𝐷, 
it is evident that the 𝐺/𝐺୫ୟ୶ prediction is more precise, possibly because measuring the damping ratio 
in the laboratory is known to be more challenging and sensitive. Importantly, all the models achieved 
Rଶ values above 0.90 and MAE below 0.07 for 𝐺/𝐺୫ୟ୶, while they attain Rଶ above 0.80 and an MAE 
below 0.02 for 𝐷. 

 
Table 4. Comparison of the Rଶ and MAE of the different models using the testing dataset based on all 

input parameters. 

Models Output 
All input parameters 

MAE 𝐑ଶതതതത 

SNN 
𝐺/𝐺୫ୟ୶ 0.0599 0.9173 

D 0.0158 0.8416 

SVR 
𝐺/𝐺୫ୟ୶ 0.0664 0.9162 

D 0.0192 0.8568 

GBR 
𝐺/𝐺୫ୟ୶ 0.0181 0.9746 

D 0.0083 0.9195 

DFFNN 
𝐺/𝐺୫ୟ୶ 0.0164 0.9830 

D 0.0069 0.9396 
 

 

Figure 7. 𝑅ଶ and MAE values of different models for predicting outputs using testing dataset. 
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5. Conclusion 
An innovative approach was introduced for predicting the dynamic properties of geomaterials, 
specifically 𝐺/𝐺୫ୟ୶ and 𝐷. The proposed DFFNN model demonstrated a remarkable performance in 
predicting these parameters. By analyzing the accuracy and loss of the model during the training 
iterations, we observed that the DFFNN model achieved an impressive accuracy of approximately 98 % 
by the 600th  iteration. The loss of the model decreased significantly, highlighting its improved 
performance. 

The assessment of the predictive capabilities of the model across different datasets, including training, 
validation, and testing, revealed a consistently high accuracy. For the testing data, the DFFNN model 
yielded correlation coefficients (Rଶ) of 0.9830 for 𝐺/𝐺୫ୟ୶ and 0.9396 for 𝐷, and low MAE values of 
0.0164 for 𝐺/𝐺୫ୟ୶ and 0.0069 for 𝐷. These results demonstrate that the model can effectively predict 
both 𝐺/𝐺୫ୟ୶  and 𝐷  with high accuracy, making it a valuable tool for geotechnical engineering 
applications. Comparative analyses of the measured and predicted values of 𝐺/𝐺୫ୟ୶ and 𝐷 confirm the 
accuracy and consistency of the DFFNN model. It showed strong predictive performance for both 
parameters and remained accurate across different datasets, as is evident from the visual representations 
of the predicted values that closely aligned with the measured values. 

In addition, the ability of the DFFNN model to accurately predict 𝐺/𝐺୫ୟ୶ and 𝐷 across different 
shear-strain levels is noteworthy. It achieved high accuracy, particularly at shear-strain levels greater 
than 10∧ିଶ, which is essential for understanding soil behavior in various geotechnical applications. 

The performance of the DFFNN model was compared with that of other models, including SNN, 
SVR, and GBR. The DFFNN model outperformed these models primarily because of its architectural 
capacity to automatically extract valuable features from the input parameters. The GBR also showed 
strong performance in output prediction. While DFFNN and GBR excelled in output prediction, SVR 
and SNN provided comparable results. In summary, the remarkable accuracy and precision of the 
DFFNN model in predicting 𝐺/𝐺୫ୟ୶ and 𝐷 makes it a valuable tool in geotechnical engineering. Its 
performance can aid in understanding soil behavior across different strain levels, which is essential for 
a wide range of geotechnical applications. 

 
References 
[1] Amir-Faryar B, Aggour M S and McCuen R H 2017 Universal model forms for predicting the 

shear modulus and material damping of soils Geomech. Geoengin. 12 60–71 
[2] Baghbani A, Choudhury T, Samui P and Costa S 2023 Prediction of secant shear modulus and 

damping ratio for an extremely dilative silica sand based on machine learning techniques. Soil 
Dyn. Earthq. Eng. 165 107708 

[3] Bayat M 2020 Universal model forms for predicting the dynamic properties of granular soils. 
Acta Geodyn. Geomater. 217–27 

[4] Bayat M, Ghalandarzadeh A 2019 Influence of Depositional Method on Dynamic Properties of 
Granular Soil. Int. J. Civ. Eng. 17 907–20 

[5] Mousavi Z, Varahram S, Ettefagh M M and Sadeghi M H 2023 Dictionary learning-based damage 
detection under varying environmental conditions using only vibration responses of numerical 
model and real intact State: Verification on an experimental offshore jacket model. MSSP 182 
109567 

[6] Mousavi Z, Ettefagh M M, Sadeghi M H and Razavi S N 2020 Developing deep neural network 
for damage detection of beam-like structures using dynamic response based on FE model and 
real healthy state. Appl. Acoust. 168 107402 

[7] Zhang W and Liu Z 2022 Editorial for machine learning in geotechnics. Acta Geotech. 17 1017 
[8] Choe D-E, Kim H-C and Kim M-H 2021 Sequence-based modeling of deep learning with LSTM 

and GRU networks for structural damage detection of floating offshore wind turbine blades. 
Renew. Energy 174 218–35 

[9] Das A, Chakrabortty P, Deb R and Banerjee S 2022 Prediction of large-strain cyclic behavior of 
clean sand using artificial neural network approach Int. J. Adv. Eng. Sci. Appl. Math 14 60–79  



GeoShanghai 2024 – Volume 5
IOP Conf. Series: Earth and Environmental Science 1334 (2024) 012040

IOP Publishing
doi:10.1088/1755-1315/1334/1/012040

15

[10] Zhang W, Li C, Peng G et al. 2018 A deep convolutional neural network with new training 
methods for bearing fault diagnosis under noisy environment and different working load Mech. 
Syst. Signal Process 100 439–53 

[11] Kardani N, Bardhan A, Gupta S et al. 2021 Predicting permeability of tight carbonates using a 
hybrid machine learning approach of modified equilibrium optimizer and extreme learning 
machine. Acta Geotech. 1–17 

[12] Saadat M and Bayat M 2022 Prediction of the unconfined compressive strength of stabilised soil 
by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR). 
Geomech. Geoengin. 1780–91 

[13] Seventekidis P, Giagopoulos D, Arailopoulos A and Markogiannaki O 2020 Structural Health 
Monitoring using deep learning with optimal finite element model generated data. Mech. Syst. 
Signal Process 145 106972 

[14] HosseinAbadi HZ, Amirfattahi R, Nazari B, et al (2014) GUW-based structural damage detection 
using WPT statistical features and multiclass SVM. Appl. Acoust. 86 59–70 

[15] Santos P, Villa LF, Reñones A et al. 2015 An SVM-based solution for fault detection in wind 
turbines. J. Sens. 15 5627–48 

[16] Zhang X, Liang Y and Zhou J 2015 A novel bearing fault diagnosis model integrated permutation 
entropy, ensemble empirical mode decomposition and optimized SVM Measurement 69 164179 

[17] Bai X-D, Cheng W-C and Li G 2021 A comparative study of different machine learning 
algorithms in predicting EPB shield behaviour: a case study at the Xi'an metro, China Acta 
Geotech. 16 4061–80 

[18] Cheng W-C and Bai X-D EPB 2021 Shield behavior prediction using machine learning regression 
methods The 2021 World Congress on Advances in Structural Engineering and Mechanics 
(ASEM21) (GECE, Seoul, Korea)  

[19] Ikeagwuani C C, Nwonu D C and Nweke C C 2022 Resilient modulus descriptive analysis and 
estimation for fine-grained soils using multivariate and machine learning methods Int. J. 
Pavement Eng. 23 3409–24 

[20] Kardani N, Aminpour M, Raja M N A et al. 2022 Prediction of the resilient modulus of compacted 
subgrade soils using ensemble machine learning methods Transp. Geotech.  36 100827 

[21] Syarif I, Prugel-Bennett A and Wills G 2016 SVM Parameter Optimization using Grid Search 
and Genetic Algorithm to Improve Classification Performance TELKOMNIKA 14 1502 


