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Abstract—Structural health monitoring (SHM) is crucial for 

maintaining the integrity and durability of offshore 

structures. Although essential, the influence of soil 

conditions on vibration-based damage detection has been 

insufficiently explored. This study introduces a new method 

to detect both single and compound damages while 

considering soil interaction. The proposed methodology 

integrates the Wavelet Transform (WT) with a Multiple 

Interference Deep Convolutional Neural Network 

(MIDCNN) to proficiently learn relevant features and 

identify damage in these structures. Specifically, the 

MIDCNN model is trained exclusively on time-frequency 

data from healthy and single damage states, deliberately 

excluding time-frequency data from compound damage 

during the training phase. During the testing phase, the 

MIDCNN model intelligently identifies healthy and single 

damage states, as well as untrained compound damage 

states, based on predefined probabilistic conditions derived 

from the MIDCNN output probabilities. To validate the 

efficacy of the proposed approach, empirical data from a 

laboratory-scale offshore monopile model with soil 

interaction is utilized. 

 

Index Terms—damage detection, deep neural network, 

offshore monopile structure 

 

I. INTRODUCTION 

The growing need for renewable and clean energy, 

driven by global warming and pollution, has heightened 

the importance of developing efficient tools and 

technologies for harnessing renewable sources like wind 

energy. Recently, the use of Offshore Wind Turbine 

(OWT) structures in deeper waters has been explored to 

capture higher average wind speeds with reduced 

turbulence, thereby maximizing energy output and 

minimizing environmental impact [1]. Offshore wind 

turbines can be broadly classified into two types: fixed-

support and floating, with further distinctions shown in 

Figure 1. An offshore monopile structure primarily 

consists of the foundation, tower, blades, nacelle, 

converter, gearbox, generator, and yaw and pitch bearings 

[2]. Common types of structural damage in these 

monopiles are depicted in Figure 2 [2]. These damages 

include: (1) Blade issues such as cracks  [3], debonding 

[4], fiber rupture, edge erosion [5], and other forms of 

damage [6]; (2) Tower and foundation problems, 

including cracks, corrosion, and deformation [3]. To 

maintain the durability and performance of offshore 

monopile structures, Structural Health Monitoring (SHM) 

is crucial. 

 
Figure 1. Support structures for OWTs [7]. 
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Figure 2. Main structural components and potential damage types to an 

offshore monopile structure [2]. 

 

Prompt assessment of damage to offshore structures is 

crucial as early detection can prevent severe damage and 

potential system failures. Delaying detection may result 

in significant deterioration and operational disruptions. 

Therefore, developing effective and reliable methods for 

identifying major damages in offshore structures is 

essential for preventing catastrophic structural decline 

and corrosion. 
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Many studies have proposed techniques for diagnosing 

single damage [8–12]. These studies mainly concentrated 

on detecting single damage in its initial stages. Several 

studies have also developed methods for diagnosing 

compound damage in rotating machines [13–16].  

This study introduces a novel method for detecting 

offshore structural damage, both single and compound, 

under soil interaction using vibration data. The approach 

combines Wavelet Transform (WT) with a Deep 

Convolutional Neural Network with Multiple Interference 

(MIDCNN). The MIDCNN is trained exclusively on 

datasets of healthy states and single damages to model 

compound damage as patterns formed by these single 

damages. During testing, the MIDCNN can identify 

healthy and single damage states and also detect 

untrained compound damage based on features linked to 

the healthy state and single damages, using probabilities 

derived from the MIDCNN output. 

II. MATERIALS AND METHODS 

The laboratory-scale offshore monopile model's 

experimental setup includes several key components for 

the investigation. These components are a steel pile, a soil 

box, a National Instrument cDAQ-9172 data acquisition 

system, a B&K 4809 shaker, seven ENDEVCO 61C12 

accelerometers, a PCB 208C03 force transducer, a B&K 

2706 power amplifier, signal transfer cables, a tamper, a 

compactor, and a computer. For offshore wind turbines 

with capacities below 5 MW, the pile specifications are a 

diameter of 4.5 m, a buried depth of 30 m, a length of 

82.5 m, and a thickness of 0.15 m, aligning with 

engineering requirements  [17]. This study employed a 

geometric scale of 1:75 based on the engineering 

prototype and Froude’s law [18], A schematic of the 

laboratory-scale offshore monopile model is provided in 

Figure 3. 
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Figure 3. Schematic of the laboratory-scale offshore monopile model. 

Raw vibration signals were recorded using seven 

accelerometers at a sampling frequency of 2000 Hz. Data 

acquisition was managed with LabVIEW Signal Express 

software, while post-processing was done using 

MATLAB. Initial tests were performed on the healthy 

structure, followed by similar tests for single and 

compound damage states. Figure 4 illustrates the raw 

vibration signals from the healthy structure under random 

excitation for the seven accelerometers. Hypothetical 

damage states were simulated by adding mounted masses 

of varying severities to different structural elements. 

Compound damage was simulated by applying masses 

with different severities simultaneously to two elements, 

causing changes in the structure's natural frequencies. 

 
Fig. 10. Raw vibration signals of the healthy structure under white 

Gaussian noise excitation force for seven accelerometers. 

Recorded vibration signals from structures often 

contain redundant and unrelated information due to 

measurement errors, varying loads, and environmental 

noise. This can lead to inaccuracies in feature learning 

and damage detection. To address this, it's essential to 

filter out redundant information while preserving critical 

damage-related features. When using WT for SHM or 

damage detection, the aim is to extract relevant features 

from the signal to assess structural condition. After 

extracting time samples, their time-frequency 

representations (TFRs) were obtained via WT, producing 

time-frequency images suitable for MIDCNN input. 

III. RESULTS AND DISCUSSION  

Figure 4 displays examples of raw vibration signals 

acquired using accelerometer A3 for different states: 

healthy, damage D1, damage D2, and compound damage. 

Although the raw time signals for these states may look 

similar, their underlying characteristics differ due to 

structural damage. To effectively distinguish these 

differences and achieve accurate classification, it is 

essential to manually extract engineering features or use 

deep learning methods to derive high-level features from 

the raw time data [19]. Feature extraction techniques are 

designed to convert raw data into a form that preserves 

key information about the signal’s characteristics for each 

state. 

 
Figure 4. Raw vibration signals for each of the healthy, damage D1, 

damage D2, and compound damage. 



Table 1 presents the classification performance of the 

proposed method alongside other methods, detailing 

accuracy rates for each class and the overall accuracy. 

The proposed method shows strong performance, with 

high accuracy in classifying test data for healthy and 

single damage states. Notably, it achieved an impressive 

97% accuracy in classifying compound damage test data. 

This indicates that the model not only effectively learns 

features from raw time-frequency data generated by the 

WT but also excels in identifying features associated with 

untrained classes. In comparison, other methods 

demonstrated lower performance, particularly in 

classifying compound damage and single damage D1. 

 
Table 1. Accuracy comparison of different methods for classifying each 
state and overall accuracy (models were only trained using healthy and 

single damage states). 

Methods 
Healthy 

(%) 

D1 

(%) 

D2 

(%) 

D1 and D2 

(compound 

state) (%) 

Overall 

(%) 

Raw frequency 

data-SNN [20] 
100 85.0 97.5 88.5 92.7 

VMD-TFR-

CNN [13] 
100 92.5 100 90.5 95.8 

WT-TFR-
MIDCNN 

(Proposed 

method) 

100 95.0 100 97.0 98.0 

IV. CONCLUSIONS 

This paper tackles existing challenges by presenting an 

end-to-end approach that combines Wavelet Transform 

(WT) with a Multiple Interference Deep Convolutional 

Neural Network (MIDCNN). The key conclusions of the 

study are as follows: 

1. Integrating WT for raw time-frequency data 

extraction with MIDCNN for direct feature 

learning eliminates the need for separate feature 

extraction and reduces computational load. 

2. The proposed approach was validated using a 

laboratory-scale offshore monopile model with 

soil interaction, covering various damage 

scenarios. The MIDCNN, trained on healthy and 

single damage states, effectively classified 

untrained compound damage based on 

probabilistic conditions from Softmax output 

probabilities. 

3. Results showed that the model excels in learning 

features from raw time-frequency data and can 

also handle untrained compound damage features. 

4. Validation demonstrated high accuracy and 

effective pattern recognition for damage D1 and 

compound damage, outperforming existing 

methods. 
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