Lecture 6: System structures for implementation

Zheng-Hua Tan

Department of Electronic Systems
Aalborg University, Denmark
zt@kom.aau.dk

Course at a glance

Discrete-time signals and systems

System

System structure

Filter design

MM1

MM2

Fourier-domain representation

Sampling and reconstruction

DFT/FFT

z-transform

MM3

MM4

MM5

MM6

MM7, MM8

MM9, MM10
System implementation

- LTI systems with rational system function e.g.
 \[H(z) = \frac{b_0 + b_1 z^{-1}}{1 - a z^{-1}}, \quad |z| > |a| \]
- Impulse response
 \[h[n] = b_0 a^n u[n] + b_1 a^{n-1} u[n-1] \]
- Linear constant-coefficient difference equation
 \[y[n] - ay[n-1] = b_0 x[n] + b_1 x[n-1] \]

Three equivalent representations!
How to implement, i.e. convert to an algorithm or structure?

System implementation

The input-output transformation \(x[n] \rightarrow y[n] \) can be computed in different ways – each way is called an implementation
- An implementation is a specific description of its internal computational structure
- The choice of an implementation concerns with
 - computational requirements
 - memory requirements,
 - effects of finite-precision,
 - and so on
Part I: Block diagram representation

- Block diagram representation of computational structures
- Signal flow graph description
- Basic structures for IIR systems
- Transposed forms
- Basic structures for FIR systems

System implementation

- Impulse response
 \[h[n] = b_0 a^n u[n] + b_1 a^{n-1} u[n-1] \]
 \[y[n] = x[n] * h[n] \]

 is infinite-duration, impossible to implement in this way.

- However, linear constant-coefficient difference equation provides a means for recursive computation of the output
 \[y[n] - ay[n-1] = b_0 x[n] + b_1 x[n-1] \]
 \[y[n] = ay[n-1] + b_0 x[n] + b_1 x[n-1] \]
Basic elements

- Implementation based on the recurrence formula derived from difference equation requires
 - adders
 - multipliers
 - memory for storing delayed sequence values

\[y[n] = a_1 y[n-1] + a_2 y[n-2] + b_0 x[n] \]

Example of block diagram representation

- A second-order difference equation

\[y[n] = a_1 y[n-1] + a_2 y[n-2] + b_0 x[n] \]

\[H(z) = \frac{b_0}{1 - a_1 z^{-1} - a_2 z^{-2}} \]

Demonstrates the complexity, the steps, the amount of resources required.
General Nth-order difference equation

\[y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k] \]

\[H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}} \]

A cascade of two systems!

\[X[n] \rightarrow v[n], \quad v[n] \rightarrow y[n] \]

Rearrangement of block diagram

- A block diagram can be rearranged in many ways without changing overall function, e.g. by reversing the order of the two cascaded systems.
System function decomposition

\[H(z) = \sum_{k=0}^{M} b_k z^{-k} \quad \text{for} \quad 1 - \sum_{k=1}^{N} a_k z^{-k} \]

\[H_2(z)H_1(z) = \left(\sum_{k=0}^{M} b_k z^{-k} \right) \left(\frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}} \right) \]

\[= H_1(z)H_2(z) = \left(\sum_{k=0}^{M} b_k z^{-k} \right) \left(\frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}} \right) \]

\[w[n] \]

In the time domain

\[y[n] = \sum_{k=1}^{N} a_k y[n-k] + \sum_{k=0}^{M} b_k x[n-k] \]

\[\begin{align*}
 v[n] &= \sum_{k=0}^{M} b_k x[n-k] \\
 y[n] &= \sum_{k=1}^{N} a_k y[n-k] + v[n] \\
 w[n] &= \sum_{k=1}^{N} a_k w[n-k] + x[n] \\
 y[n] &= \sum_{k=0}^{M} b_k w[n-k]
\end{align*} \]
Minimum delay implementation

- One big difference btw the two implementations concerns the number of delay elements
 \[N + M \]
 \[\text{max}(N, M) \]

Direct form I and II

- Direct form I as shown in Fig. 6.3
 - A direct realization of the difference equation
- Direct form II or canonic direct form as shown in Fig. 6.5
 - There is a direct link between the system function (difference equation) and the block diagram
An example

- Direct form I and direct form II implementation

\[H(z) = \frac{1 + 2z^{-1}}{1 - 1.5z^{-1} + 0.9z^{-2}} \]

\[x[n] \quad 2 \quad x[n-1] \quad + \quad 1.5 \quad x[n-3] \quad y[n] \]

\[-0.9 \quad x[n] \quad \] \[\quad 1.5 \quad y[n] \quad \]

Figure 6.6 Direct form I implementation of Eq. (8.16).

Figure 6.7 Direct form II implementation of Eq. (8.18).

Part II: Signal flow graph description

- Block diagram representation of computational structures
- Signal flow graph description
- Basic structures for IIR systems
- Transposed forms
- Basic structures for FIR systems
Signal flow graph (SFG)

- As an alternative to block diagrams with a few notational differences.
- A network of directed branches connecting nodes.

Nodes in SFG represent both branching points and adders (depending on the number of incoming branches), while in the diagram a special symbol is used for adders and a node has only one incoming branch.

SGF is simpler to draw.
From flow graph to system function

From flow graph to system function

- Not a direct form,
 - cannot obtain $H(z)$ by inspection.
 - But can write an equation for each node
 - $w_4[n] = w_3[n-1]$ involve feedback, difficult to solve
 - By z-transform → linear equations

\[
\begin{align*}
 w_1[n] &= w_4[n] - x[n] \\
 w_2[n] &= \alpha w_1[n] \\
 w_3[n] &= w_2[n] + x[n] \\
 w_4[n] &= w_3[n-1] \\
 y[n] &= w_2[n] + w_4[n]
\end{align*}
\]

\[
\begin{align*}
 W_1(z) &= W_4(z) - X(z) \\
 W_2(z) &= \alpha W_1(z) \\
 W_3(z) &= W_2(z) + X(z) \\
 W_4(z) &= z^{-1} W_3(z) \\
 Y(z) &= W_2(z) + W_4(z)
\end{align*}
\]

\[
Y(z) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}} X(z)
\]

\[
H(z) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}} \quad \text{If } \alpha \text{ is real, the system is } \text{All-pass}
\]

\[
h[n] = \alpha^{-1} u[n-1] - \alpha^{n+1} u[n] \quad \text{Causal!}
\]
From flow graph to system function

Different implementations, different amounts of computational resources

Part III: Basic structures for IIR systems

- Block diagram representation of computational structures
- Signal flow graph description
- Basic structures for IIR systems
- Transposed forms
- Basic structures for FIR systems
Direct form I

\[y[n] = \sum_{k=1}^{N} a_k y[n - k] + \sum_{k=0}^{M} b_k x[n - k] \]

\[H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}} \]

Figure 6.14 Signal flow graph of direct form I structure for an \(N \)th-order system.

Direct form II

\[y[n] = \sum_{k=1}^{N} a_k y[n - k] + \sum_{k=0}^{M} b_k x[n - k] \]

\[H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}} \]

Figure 6.15 Signal flow graph of direct form II structure for an \(N \)th-order system.
Example

\[H(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - 0.752z^{-1} + 0.125z^{-2}} \]

Figure 6.16 Direct form I structure for Example 6.4.

Cascade form

Factor the numerator and denominator polynomials

\[
\begin{align*}
 H(z) &= \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=1}^{N} a_k z^{-k}} = A_{k=1}^{M} (1 - f_k z^{-1}) (1 - g_k^* z^{-1}) \\
 H(z) &= \frac{\prod_{k=1}^{M} (1 - f_k z^{-1}) (1 - g_k^* z^{-1})}{1 - \prod_{k=1}^{N} (1 - c_k z^{-1}) (1 - d_k^* z^{-1})} \\
 H(z) &= \prod_{k=1}^{N} \frac{b_{0k} + b_{1k} z^{-1} + b_{2k} z^{-2}}{1 - a_{1k} z^{-1} - a_{2k} z^{-2}}
\end{align*}
\]

Figure 6.18 Cascade structure for a sixth-order system with a direct form II realization of each second-order subsystem.
An example: from 2nd-order to 1st-order cascade

\[
H(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - 0.752z^{-1} + 0.125z^{-2}} = \frac{(1 + z^{-1})}{(1 - 0.5z^{-1})(1 - 0.25z^{-1})}
\]

Parallel form by partial fraction expansion

\[
H(z) = \sum_{k=0}^{N_p} C_k z^{-k} + \sum_{k=1}^{N_p} \frac{A_k}{1 - c_k z^{-1}} + \sum_{k=1}^{N_c} B_k \frac{1 - e_k z^{-1}}{(1 - d_k z^{-1})(1 - d_k^* z^{-1})}
\]

Figure 6.19 Cascade structures for Example 6.5. (a) Direct form (b) Direct form II subsections.

Figure 6.20 Parallel-form structure for sixth-order system \((M = N = 6)\) with the real and complex poles grouped in pairs.
Feedback in IIR systems

Feedback loop: a closed path Necessary but not sufficient condition for IIR system (Feedback introduced poles could be cancelled by zeros)

\[H(z) = \frac{1 - a^2 z^{-2}}{1 - az^{-1}} = 1 + az^{-1} \]

All loops must contain at least one unit delay element

Part IV: Transposed forms

- Block diagram representation of computational structures
- Signal flow graph description
- Basic structures for IIR systems
- Transposed forms
- Basic structures for FIR systems
Transposed form for a first-order system

Flow graph reversal or transposition also provides alternatives: reversing the directions of all branches and reversing the input and output. Resulting in same $H(z)$

$$H(z) = \frac{1}{1 - az^{-1}}$$

Transposed direct form II and direct form II

The transposed direct form II implements the zeros first and then the poles, being important effect for finite-precision existing.
Part V: Basic structures for FIR systems

- Block diagram representation of computational structures
- Signal flow graph description
- Basic structures for IIR systems
- Transposed forms
- Basic structures for FIR systems

Direct form

- So far, system function has both poles and zeros. FIR systems as a special case.
- Causal FIR system function has only zeros (except for poles as z=0)

\[y[n] = \sum_{k=0}^{M} b_k x[n-k] \]
\[h[n] = \begin{cases} b_n, & n = 0, 1, \ldots, M \\ 0, & \text{otherwise} \end{cases} \]

- Form I and form II are the same.
Cascade form

Factoring the polynomial system function

\[H(z) = \sum_{n=0}^{M} h[n]z^{-n} = \prod_{k=1}^{M} (b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}) \]

Figure 6.33 Cascade-form realization of an FIR system.

Linear-phase FIR systems

- Generalized linear-phase system

 \[H(e^{j\omega}) = A(e^{j\omega})e^{-j\omega\alpha + j\beta} \]

 \(A(e^{j\omega}) \) is a real function of \(\omega \),

 \(\alpha \) and \(\beta \) are real constants

- Causal FIR systems have generalized linear-phase

 if \(h[n] \) satisfies the symmetry condition

 \[h[M-n] = h[n], \quad n = 0,1,\ldots,M \]

 or

 \[h[M-n] = -h[n], \quad n = 0,1,\ldots,M \]
Linear-phase FIR systems

if M is an even integer

$$y[n] = \sum_{k=0}^{M} h[k] x[n-k]$$

$$= \sum_{k=0}^{M/2-1} h[k] x[n-k] + h[k/M] x[n-M/2] + \sum_{k=M/2+1}^{M} h[k] x[n-k]$$

$$= \sum_{k=0}^{M/2-1} h[k] x[n-k] + h[k/M] x[n-M/2] + \sum_{k=0}^{M/2-1} h[M-k] x[n-M+k]$$

if $h[M-n] = h[n]$

$$y[n] = \sum_{k=0}^{M/2-1} h[k](x[n-k] + x[n-M+k]) + h[k/M] x[n-M/2]$$

Linear phase FIR systems

M is an even integer and $h[M-n] = h[n]$

$$y[n] = \sum_{k=0}^{M/2-1} h[k](x[n-k] + x[n-M+k]) + h[k/M] x[n-M/2]$$
Discussions

- Implementation of FIR and IIR systems
- Use signal block diagram flow graph representation to show the computational structures
- Although two structures may have equivalent input-output characteristics for infinite-precision representations of coefficients and variables, they may have dramatically different behaviour when the numerical precision is limited.

Summary

- Block diagram representation of computational structures
- Signal flow graph description
- Basic structures for IIR systems
- Transposed forms
- Basic structures for FIR systems
Course at a glance

Discrete-time signals and systems

- Fourier-domain representation (MM2)
- Sampling and reconstruction (MM4)
- Z-transform (MM3)
- DFT/FFT (MM9, MM10)

System

- System analysis (MM5)
- System structure (MM6)
- Filter design (MM7, MM8)