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A B S T R A C T   

This study presents a pioneering approach in laser welding of two dissimilar materials by integrating an Artificial 
Intelligence (AI)-based on predictive model with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for 
optimizing key performance characteristics of Nickel-based alloy and duplex 2205 stainless steel. Focusing on 
four primary input variables including laser power, welding speed, focal distance and deviation, the research 
aims to predict and optimize the responses including temperature field adjacent to the melt pool, penetration 
depth, and tensile strength of the joint according to the experimental results. The developed AI model first 
accurately forecasts these characteristics based on the inputs. This predictive accuracy is critical in defining the 
optimal target values. Considering the multidimensional nature of the problem, where enhancing one charac-
teristic could compromise another, the study employs a Multi-Objective Optimization (MOO) strategy. This is 
where the innovative integration with NSGA-II becomes pivotal. Renowned for its efficiency in navigating 
multiple, potentially conflicting objectives, NSGA-II assists in achieving a balanced optimization of all target 
parameters. This method is adept at considering the complex interdependencies among various characteristics. 
The novelty of this work lies in its unique combination of AI for prediction and MOO for optimization and it is for 
the first time that machine learning is applied on this kind of alloys with four features and four targets.   

1. Introduction 

In recent years, the integration of Artificial Intelligence (AI) with 
advanced optimization algorithms has revolutionized manufacturing 
processes, offering unprecedented precision and efficiency in optimizing 
complex systems. AI-based predictive models have demonstrated their 
utility across diverse engineering applications [1]. For instance, 
short-time wind speed prediction using artificial neural networks [2,3] 
and anti-noise diesel engine misfire diagnosis employing multi-scale 
CNN-LSTM networks [4] highlight the predictive capabilities essential 
for defining precise optimization targets in welding processes. The 
integration of NSGA-II in this study underscores its effectiveness in 
navigating the complex trade-offs inherent in Multi-Objective 

Optimization (MOO). This approach draws inspiration from advance-
ments in fault diagnosis, such as a robust approach of multi-sensor 
fusion for fault diagnosis using convolutional neural networks [5,6], 
and dynamic neural network architectures and optimizations for pre-
dicting remaining useful life in dynamic processes [7,8]. Moreover, 
recent innovations in predictive accuracy algorithms, such as the 
alpha–beta filter enhanced by feedforward artificial neural networks for 
improved prediction accuracy [9], underscore the importance of precise 
forecasting in achieving optimal welding parameters. Similarly, ad-
vancements in fault diagnosis using non-local 1D-convolutional neural 
networks for rolling bearing fault diagnosis [10] and effects of heat 
treatment processing on microstructure evolution in alloys [11] high-
light the robustness of AI techniques in complex industrial applications. 
Furthermore, physics-informed deep neural networks for bearing 
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prognosis with multisensory signals [12], and a comparative analysis of 
feature eliminator methods to improve machine learning [13], under-
score the diversity of AI applications across different industrial domains. 
Additionally, microstructure and mechanical properties of thin 
aluminum alloy by friction stir welding [14], numerical simulation of 
thermal explosion welding of bimetallic plates [15], and effects of heat 
treatment processing on microstructure evolution and microhardness 
highlight advancements in materials processing techniques [16]. Laser 
welding has become an increasingly popular method for joining dis-
similar materials due to its precision, efficiency, and ability to produce 
high-quality welds. Dissimilar laser welding is a modern welding tech-
nique that involves joining two or more materials with different com-
positions using laser energy [17]. This process is widely used in various 
industries, including automotive, electronics, and medical, due to its 
numerous advantages over traditional welding methods. Unlike con-
ventional welding techniques, dissimilar laser welding does not require 
any physical contact between the materials being joined, making it a 
non-contact and non-damaging process. This results in minimal distor-
tion and reduced heat-affected zones, leading to higher quality welds 
with less post-welding processing [18]. Additionally, the precise control 
of laser energy allows for the welding of dissimilar materials with vastly 
different melting points, making it a versatile and efficient process. 
Dissimilar laser welding also offers higher production speeds and 
improved accuracy, making it a cost-effective option for many applica-
tions [19]. As technology continues to advance, dissimilar laser welding 
is becoming increasingly popular and is expected to play a significant 
role in the future of manufacturing. In particular, the combination of 
Nickel-based alloy and Duplex stainless steel presents a unique chal-
lenge for welding due to their significant differences in physical and 
chemical properties [20]. To address this challenge, multi-objective 
modeling and optimization techniques have been developed, allowing 
for the simultaneous consideration of multiple performance criteria in 
the welding process. By integrating an AI predictive model with the 
NSGA-II algorithm, this approach offers a comprehensive and efficient 
way to optimize the welding process and achieve desired results. 
Building upon this foundation, recent studies by Nejad et al. [21] have 
delved into the fatigue life and welding parameter optimization of 
AA2024-T351 aluminum alloy, employing Artificial Neural Networks 
(ANNs) and multi-objective optimization algorithms to scrutinize the 
influence of rotational and traverse speeds on fracture toughness and 
fatigue crack growth rates. Furthermore, Nejad et al. [22] have 
contributed to the field by focusing on the fatigue life prediction of 
pearlitic Grade 900 A steel in railway applications. Their work involves 
using a feed-forward neural network to predict fatigue life based on 
stress cycles, occurrence and overload ratios, and conducting sensitivity 
analysis to gauge the impact of input parameters on fatigue life. In 
addition, they applied a genetic algorithm to maximize fatigue life based 

on the given input values. Nejad et al. [23] extended their investigations 
to the fatigue life of riveted joints in AA2024 aluminum alloy, employing 
a comprehensive approach that includes experimental tests, artificial 
neural networks for prediction, metaheuristic optimization for param-
eter calculation, and sensitivity analysis to evaluate parameter effects on 
the riveting process and fatigue life. These studies collectively highlight 
the power of combining AI-driven predictive models with optimization 
techniques for enhancing our understanding and control of complex 
material systems. In addition, experimental studies have been conducted 
to validate the effectiveness of these techniques and further optimize the 
welding process. Sołtysiak et al. [24] investigated the effect of changing 
the beam power in the laser welding process of Duplex Stainless Steel. 
Their results showed that with the increase in the power of the device, 
the volume of the fusion zone increases and the optimal value of the 
power of the device to achieve the highest power strength is 2 KW. 
Saravanan et al. [25] investigated the mechanical properties of the weld 
zone by changing the input heat to the workpiece in the Duplex stainless 
steel laser welding process. Their results showed that the maximum 
hardness in the fusion zone is due to the formation of finer grains and the 
corrosion rate decreases over time with the formation of an oxide layer. 
Mohammed et al. [26] investigated the dissimilar laser welding pa-
rameters of alloy 2205/304 stainless steel. Their results showed that 
with increasing laser output power, the depth and width of the weld 
increases and the geometry of the weld bead is also affected by the laser 
pulse width. Bolut et al. [27] investigated fiber laser welding of Duplex 
stainless steel 2205 alloy based on welding speed and input heat. Their 
results showed that by changing the mentioned parameters, the micro-
structure of the welding area will be affected, which will also affect the 
welding quality. Mirakhorli et al. [28] investigated the change of speed 
and frequency of pulse parameters in Duplex Stainless Steel laser 
welding process and its effect on mechanical properties. Their results 
demonstrated that the cooling rate, which is dependent on the change of 
the mentioned parameters, can be effective on the change rate of ferrite 
to austenite in the fusion zone. Hussein et al. [29] investigated the 
change of Nickel-based alloy laser welding parameters and its effect on 
mechanical and metallurgical properties. Their results showed that the 
samples welded by the laser process have a much higher hardness 
compared to other methods. Also, the factors affecting the cooling rate 
can affect the microstructure. 

In conclusion, this study proposes a novel approach for optimizing 
key performance characteristics in dissimilar laser welding of Nickel- 
based alloy and Duplex stainless steel. By integrating an AI predictive 
model with the NSGA-II algorithm, the research aims to accurately 
forecast and optimize critical parameters such as temperature field near 
the melt pool, penetration depth, and tensile strength. The use of AI 
allows for precise predictions, while the incorporation of NSGA-II fa-
cilitates a balanced optimization of multiple objectives. This method is 

Nomenclature 

b Bias Term 
C Regularization Parameter 
C The Box Constraint 
CD Crowding Distance 
CDi The Summation of Crowding Distances of Particle i 
di,k The Crowding Distance of Particle i for the kth Target 

Function 
F(x) Multi-objective Function 
K The Kernel Function 
Obj 1 Temperature Duplex 
Obj 2 Temperature Nickle based alloy 
Obj 3 Depth of the Melt Pool 
Obj 4 Tensile Strength of the Joint 

w Weight Vector 
x Feature Vector 
x1 Laser Power 
x2 Welding Speed 
x3 Focal Distance 
x4 Deviation 
yi he Actual Target Value for the ith Observation 

Greek symbols 
αi Lagrange Multiplier 
ϵ The Insensitivity Zone 
Φ(xi) The Feature Mapped Input Data 
σ Kernel Scale 
ξi` Slack Variable  
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specifically tailored for the complex and multidimensional nature of 
materials engineering, making it a pioneering contribution to the field. 
This study pioneers the integration of an AI-based predictive model with 
the NSGA-II algorithm for optimizing laser welding of Nickel-based alloy 
and Duplex 2205 stainless steel, marking the first application of machine 
learning for these kind of material with the mentioned features and 
targets. It comprehensively considers four key input variables and 
multiple critical responses, enhancing predictive accuracy and 
achieving balanced optimization. The innovative approach addresses 
the complex interdependencies in welding dissimilar materials, opening 
new avenues for research and industrial applications. 

2. Dissimilar laser welding experiments 

Laser welding experiments were done to provide a laser welding data 
base for artificial neural network. The equipment’s used for laser 
welding experiments including a 3 axis CNC table equipped with NC 
studio software. A continuous wave fiber laser with maximum power of 
1 KW along with Raytools BW240 welding head were used for experi-
ments. Argon gas at flow rate of 2 lit/min was applied to protect the melt 
pool region. All of the samples for metallography were prepared under 
ASTM E3. The optical microscope was used for metallography analysis 
to measure the melt pool depth. Evaluation of welded joint mechanical 
properties was performed through tensile tests applied on universal 
tensile testing machine. Tensile tests samples were prepared under 
ASTM E8 standard. The K-type thermocouples with diameter of 1 mm 
were used for temperature measurement. The analog signal of thermo-
couples grabbed by DAQ module model USB 4718. The workpiece di-
mensions were 20×50×1.5 mm. The chemical composition of Duplex 
2205 stainless steel and Nickel-based alloy is observed in Table 1. In 
order to evaluate the effect of dissimilar laser welding process param-
eters on weld characterizations, a set of laser welding experiments at 
different combinations was performed to evaluate the weld character-
izations. Four main parameters of laser power, welding speed, focal 
distance and deviation were considered as major factors. The maximum 
temperature at distance of 2 mm from the center of the melt pool on 
each alloy, depth of penetration and tensile strength were considered as 
means of responses. The actual and schematic view of experimental 
setup are shown in Fig. 1. The central composite design method was 
utilized for experimental design including totally 29 experiments. The 
experimental tests condition and the results were presented in Table 2. 
The provided experimental data results were used for training an AI 
model in order to make accurate predictions based on these datasets. 

Fig. 2 illustrates the appearance of weld fusion zone cross section to 
measure the melt pool depth. As it is shown in Fig. 2, the weld pene-
tration was complete and the value of depth was 1.5 mm. Furthermore, 
the appearance of the weld bead surface and the location of the ther-
mocouples groove for temperature measurement are observed in Fig. 3. 
The appearance of tensile test samples after tensile tests for some of the 
experiments is depicted in Fig. 4. The tensile tests result (ultimate tensile 
strength and elongation rate) is depicted in Table 3. For each experi-
mental condition, the related results gained from the tensile test con-
dition including the ultimate tensile strength (UTS) and elongation rate 
is illustrated. This data was used as means the tensile tests response for 
training. 

2.1. The parameters effect on weld geometry 

Clearly, the heat input induced in laser welding toward material is 
influenced by laser beam power, the beam diameter and welding speed. 
All of these factors have directly impact on weld bead geometry. In other 
words, the laser line energy determine the efficiency of the heat input 
per time during laser welding process. By increasing the laser power, the 
penetration depth of laser beam significantly increased compared to the 
other factors. Additionally, the width of the weld bead clearly increased 
by augmentation of laser power because of creating more melt volume. 
The beam dimeter has a direct impact on the energy density of the beam 
at weld bead line. Evidently, decreasing the beam diameter reduce the 
weld bead width and increase the penetration depth of the weld bead. 
The welding speed generally determine the laser beam interaction time 
with material. Decreasing the welding speed simultaneously increase 
both depth and width of the weld bead at similar rates. 

2.2. The weld joint microstructure effect on tensile strength 

The influence of microstructure on tensile strength could be 
considerable. By increasing the laser beam energy, a notable micro-
structural transformation at different regions of the fusion zone took 
occur from the fusion line to the melt pool centerline. Generally, the 
joint tensile strength vividly depends on the melt pool dimensions and 
the fusion zone microstructure as well. Fig. 5 clearly depicts the varia-
tion of fusion zone microstructure in laser welding process. At the fusion 
zone, there are numerous regions composed of columnar dendrite and 
cellular dendrite microstructure. The ultimate tensile strength of 
columnar dendrite microstructure has been clearly in higher level while 
the elongation rate may be reduced. The higher laser beam energy 
density produced higher amount of columnar dendrite microstructure at 
more extended volume of the fusion zone from the fusion line to the 
center of the fusion zone and thereby higher tensile strength and elon-
gation rate at wider region of melt pool depth and width is gained. At 
lower laser line energy, because of higher melting point of Duplex 
stainless steel, a wider region of unmixed zone was observed and as a 
results the samples failure from this region at low level of tensile 
strength and elongation. By increasing the laser beam energy (aug-
menting the laser power), the portion of columnar dendrite remarkably 
increased due to experiencing higher temperature gradient and thereby 
the tensile strength evidently increases. According to the cooling rate 
and intensity of the temperature gradient at different regions of the melt 
pool, the ratio of the columnar to cellular dendrite may change and 
thereby the joint tensile strength directly influenced by microstructure. 
On the other hand, although formation of more columnar dendrite could 
increase the joint tensile strength, the strain of the joint may slightly 
reduce compared to formation of cellular dendrite. Additionally, in 
dissimilar welding, due to different melting point of two materials, the 
joint fracture region at low levels of laser beam energy density has been 
toward Duplex stainless steel fusion line due to increasing the possibility 
of creating unmixed zone at the fusion line of Duplex stainless steel 
which is roots from Duplex stainless steel higher melting temperate 
about 80 ◦C. 

3. Machine learning and artificial intelligence architecture 

In this section the procedure of selecting the neural network ac-
cording to the provided data is described. 

Table 1 
Materials chemical composition.  

Material Elements (%W)    

Element C Si Mn P s Cr Fe Ni CO AL Ti Mo 
Duplex 2205 0.03 1 2 0.03 0.02 22 Bal - -    
Nickel-based alloy 0.08 0.15     2 Bal 13.5 1.5 3 4.3  
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Fig. 1. Laser welding experimental configuration, a) actual view, b) schematic view.  

Table 2 
The laser welding experimental data.  

Exp. no Power 
(W) 

Speed 
(mm/min) 

Focal distance (mm) Deviation 
(mm) 

Temperature 
(℃) 

Temperature 
(℃) 
Duplex 

Depth 
(melt pool) 
(mm) Nickel-based alloy  

1  350  300  1.5  0  116  197  1.2  
2  300  200  0  -0.25  181  142  0.92  
3  350  500  1.5  0  95  133  0.76  
4  400  200  0  -0.25  251  302  1.5  
5  350  300  1.5  0  156  170  1  
6  300  400  0  -0.25  104  167  0.78  
7  300  400  0  0.25  92  186  1.12  
8  350  300  1.5  0.5  95  243  0.85  
9  450  300  1.5  0  226  340  1.5  
10  400  400  3  -0.25  235  146  1.12  
11  400  200  3  -0.25  258  277  1.5  
12  250  300  1.5  0  82  144  0.34  
13  400  200  3  0.25  221  284  1.2  
14  350  300  1.5  0  176  165  0.95  
15  300  200  3  0.25  88  182  0.42  
16  400  400  0  0.25  114  217  1.2  
17  350  300  1.5  -0.5  180  132  0.9  
18  350  300  1.5  0  144  182  1.11  
19  350  300  -1.5  0  165  211  1.14  
20  300  400  3  0.25  113  167  0.48  
21  300  400  3  -0.25  164  137  0.37  
22  350  300  4.5  0  155  122  0.45  
23  350  300  1.5  0  158  187  1.15  
24  400  400  0  -0.25  116  185  0.9  
25  400  200  0  0.25  224  345  1.5  
26  300  200  0  0.25  108  233  0.96  
27  400  400  3  0.25  152  213  0.85  
28  350  100  1.5  0  178  226  1.35  
29  300  200  3  -0.25  105  133  0.4  

Fig. 2. The melt pool cross section appearance for depth measurement, a) dissimilar weld fusion zone and base metals, b) fusion zone adjacent to the duplex 
base metal. 
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3.1. Data definition and features 

In this research, the data has four features which are describes as 
follows. 

3.1.1. Laser power 
Laser power determines the energy delivered to the weld area, 

affecting temperature distribution and melt pool depth. High laser 
power ensures deeper penetration and a significant melt pool but can 
cause defects like burn-through or spatter. Optimal laser power balances 
penetration and material integrity. 

3.1.2. Welding speed 
Welding speed controls, the laser’s movement along the weld bead. 

Faster speeds reduce heat input per unit length, minimizing thermal 
distortion and the heat-affected zone (HAZ). However, too high a speed 
can lead to incomplete fusion, while slower speeds increase heat input. 

3.1.3. Focal distance 
The focal distance between the laser’s focal point and the workpiece 

surface influences the laser beam’s intensity and focus. Proper adjust-
ment ensures concentrated laser energy at the desired location, 
enhancing welding efficiency and quality. 

3.1.4. Deviation 
Deviation refers to the position of the laser beam irradiation related 

to the center of the weld joint. In dissimilar welding this approach 
commonly used to balance the melting ratio of both dissimilar metals. 

In this research, the primary objective is to identify a suitable AI 
model that can make accurate predictions based on the provided data-
set. The foundation for achieving this aim lies in understanding the 
structure and nature of the available data. The dataset presented in 
Table 2, comprises multiple columns. Specifically, the initial four col-
umns represent the input variables, which serve as the foundation for 
our predictions. In contrast, the subsequent four columns are the target 
variables, signifying the outcomes we aspire to predict. By carefully 
examining these inputs and targets, the study aims to derive meaningful 
insights and ensure the chosen AI model aligns well with the data’s 
characteristics. 

Fig. 3. Location of thermocouples placement for temperature measurement 
related to the weld bead center. 

Fig. 4. Appearance of detached tensile test samples for a) Exp. No 4, b) Exp. No 
6, c) Exp. No2, d) Exp. No 11, e) Exp. No7. 

Table 3 
Tensile tests result of the dissimilar joint.  

Exp. No Ultimate tensile strength (UTS) 
(MPa) 

Elongation 
(%)  

1  245  8.1  
2  229  6.2  
3  205  3.2  
4  326  14.2  
5  275  10.3  
6  209  5.1  
7  228  6.6  
8  210  10.4  
9  312  16.1  
10  267  11.1  
11  291  10.3  
12  186  3.2  
13  246  12.2  
14  262  7.3  
15  248  6.1  
16  293  9.2  
17  218  5.4  
18  251  7.1  
19  295  9.2  
20  212  5.5  
21  185  8.9  
22  228  3.3  
23  266  4.4  
24  256  8.3  
25  308  11.3  
26  274  8.4  
27  258  5.8  
28  285  9.3  
29  234  7.2  

Fig. 5. The melt pool microstructure from Duplex stainless steel side to the 
weld centerline. 

H. Aghaei et al.                                                                                                                                                                                                                                  



Materials Today Communications 40 (2024) 109765

6

3.2. Machine learning approach 

Machine learning is a subset of AI that provides systems the ability to 
automatically learn and improve from experience without being 
explicitly programmed. This involves developing algorithms that can 
receive input data and use statistical analysis to predict an output while 
updating outputs as new data becomes available. In the realm of ma-
chine learning, Support Vector Regression (SVR) stands out as a prom-
inent methodology. SVR is an extension of Support Vector Machines 
(SVM), a set of related supervised learning methods primarily used for 
classification. While SVMs are best known for their ability to classify 
linear and non-linear data, their regression counterpart, SVR, adapts 
these principles to model and predict numerical outputs based on given 
input features. 

3.3. Some definitions 

In the following, some underlying concepts are presented. 
- Hyperplane: In SVM, this is a decision boundary separating 

different classes. In the context of SVR, it represents a line (in two- 
dimensional space) or a plane in higher dimensions that best fits the 
data points. 

- Margin: This is the gap between the hyperplane and the nearest data 
point from either class. Maximizing this margin is a key objective in SVM 
to enhance model generalization. 

- Support Vectors: These are the critical elements of the data set that 
are closest to the hyperplane. They play a crucial role in defining the 
hyperplane because their removal can significantly alter the hyper-
plane’s position, unlike other data points. 

- Kernel Trick: Recognizing that real-world data is frequently not 
linearly separable, SVM employs the kernel trick to transform data into a 
higher-dimensional space, making it easier to separate linearly. Kernel 
functions like polynomial, radial basis function (RBF), and sigmoid are 
used in this transformation. 

3.4. SVM and SVR 

SVM and SVR are critical methodologies within the artificial intel-
ligence and optimization landscape, offering advanced solutions for 
classification and regression challenges, respectively [30]. Originating 
from the innovative work of Vladimir Vapnik and co-authors in the 
1990s [30], these algorithms are anchored in supervised learning, a 
subset of AI focusing on the development of predictive models based on 
labeled datasets. SVM is used to solve classification problems by iden-
tifying an optimal separating hyperplane, which is akin to discovering a 
decision boundary in a multidimensional space [30]. This boundary is 
meticulously calibrated to maximize the margin between the nearest 
data points of distinct categories, known as support vectors. The algo-
rithm’s effectiveness is significantly enhanced by its capacity to handle 
non-linear problems using the kernel trick [31]. This trick, a cornerstone 
in SVM’s optimization strategy, ingeniously projects input features into 
a higher-dimensional space, thereby overcoming the limitations 

inherent in linear classifiers and enabling complex decision surfaces. 
SVR extends the principles of SVM to regression tasks, aiming to forecast 
a continuous target variable [30]. SVR’s approach revolves around 
constructing a function that lies within an ε-insensitive zone, ensuring 
the deviation from actual data points is minimally confined, empha-
sizing model simplicity and generalization. Both SVM and SVR optimize 

their performance by strategically positioning training data in feature 
space, optimizing separation margins (in SVM) and minimizing predic-
tion error within a specified threshold (in SVR) [32]. In Eq.1, the pre-
diction formula is presented. 

f(x) = wTx+ b (1)  

Where 
w is the weight vector 
b is the bias term 
In SVR, the main objective is to minimize ‖w‖ to ensure the model is 

as flat as possible, while keeping the errors within a certain threshold ϵ 
In a practical setting, however, it’s often impossible to fit all data points 
within this strict margin. Therefore, slack variables ξi and ξi are intro-
duced to allow some deviations for points outside this margin. 

3.5. Problem definition 

In the machine learning, the problem should be defined in a suitable 
format. In the following, the formulas for problem definition are 
presented. 

3.5.1. Primal problem 
In SVR, the target function is shown in Eq. 2: 

min
1
2
‖w‖

2
+C

∑N

i=1
(ξi + ξi) (2) 

Subject to 

yi − wTΦ(xi) − b ≤ ϵ+ ξi  

wTΦ(xi) + b − yi ≤ ϵ+ ξi  

ξi, ξi ≥ 0,∀i  

Where: 
Φ(xi) is the feature mapped input data and yi is the actual target 

value for the ith observation. 
C is a regularization parameter, balancing the trade-off between the 

flatness of f(x) and the amount up to which deviations larger than ϵ are 
tolerated. Also, Ccan be called as the box constraint. 

ξi,ξiare slack variables that measure the degree of violation of the ϵ 
margin. 

ϵ is the insensitivity zone, within which no penalty is associated in 
the training loss. 

To solve this optimization problem, a dual formulation is typically 
used, involving Lagrange multipliers αi, αi The dual form is beneficial 
because it simplifies the optimization problem, especially when dealing 
with non-linear relationships, by incorporating kernel functions and 
Lagrangian method which is presented in Eq. 3. 

3.5.2. Lagrangian    

Where α,αare the Lagrange multipliers. 

3.5.3. Dual problem 
Applying the KKT Conditions: The KKT conditions lead to a set of 

equations which, when substituted back into the Lagrangian, help 

L =
1
2
‖w‖

2
+C

∑N

i=1
(ξi + ξi) −

∑N

i=1
αi
(
ϵ+ ξi − yi +wTΦ(xi)+ b

)
−
∑N

i=1
αi
(
ϵ+ ξi + yi − wTΦ(xi) − b

)
−
∑N

i=1
μiξi −

∑N

i=1
μiξi (3)   
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eliminate the primal variables, the conditions are shown in Eq. 4. 
∂L
∂w = 0leads to w =

∑N
i=1(αi − αi)Φ(x)

∂L
∂b = 0leads to 

∑N
i=1(αi − αi) = 0 

∂L
∂ξi

= 0leads toC − αi − μi = 0 (4) 

∂L
∂ξi

= 0leads to C − αi − μi = 0 

3.5.4. Reformulating the dual problem 
After applying these conditions and simplifying, the dual problem 

will be obtained as Eq. 5. 

max
− 1
2

∑N

i=1

∑N

i=1
(αi − αi)(αi − αi)K

(
xi, xj

)
− ϵ

∑N

i=1
(αi − αi)+

∑N

i=1
yi(αi − αi)

Subject to: 

∑N

i=1
(αi − αi) = 0  

0 ≤ αi , αi ≤ C , ∀i (5) 

Where: 
K
(
xi, xj

)
is the kernel function (RBF in this case). 

RBF stands for Radial Basis Function, a type of kernel which is 
defined as Eq. 6. 

K
(
xi, xj

)
= exp

(
− γ‖xi − xj‖

2) (6)  

Where xi, xj are the feature vectors. γis the spread of kernel and 
‖xi − xj‖

2 is the squared Euclidean distance between the two feature 
vectors. The reason of using RBF kernel is its ability to manage non- 
linear relationships between the features and the target variable. The 
RBF kernel can map data points to a higher-dimensional space where 
they become linearly separable or more suitable for regression. Within 
the framework of this study, a four-dimensional input and output space 
is addressed. When dealing with such dimensional intricacy, particularly 
in cases of limited datasets, there emerges a significant challenge of 
model underfitting. Underfitting is characterized by a model’s overly 
simplistic nature, inhibiting its capability to adequately capture and 
reflect the intrinsic complexities and patterns inherent in the data. This 
results in a model marked by high bias, evidenced by its poor perfor-
mance on both training and unseen datasets, demonstrating an inability 
to accurately discern the true structure of the data. In contrast, the risk of 
overfitting is equally pertinent. This occurs when a model becomes 
excessively complex in its attempt to grasp data nuances, to the point 
where it learns not just the underlying patterns but also the noise within 
the training data. Such models may exhibit high accuracy on training 
datasets, but their practicality is compromised due to high variance. To 
decrease the risk of overfitting or underfitting, this study applies cross 
validation to find suitable values for hyper parameters including Box 
Constraint (C) and Kernel Scale σ. 

3.6. Hyperparameters description 

Box Constraint (C in SVM formula): This parameter determines the 
penalty imposed on observations that are positioned outside the ϵ 
margin (for regression tasks). It controls the trade-off between allowing 
training errors and forcing rigid margins. It’s a regularization param-
eter, where a smaller value of C allows more misclassifications (or larger 
errors for regression) and leads to a softer margin. In contrast, a larger 
value of C aims for more accurate classifications (or smaller errors in 
regression), leading to a harder margin. In the SVM formula, this was 
represented as the C in the regularization term, influencing the opti-
mization problem: 

Kernel Scale (σ in the case of an RBF kernel): This hyperparameter is 

used in the Radial Basis Function (RBF) kernel of the SVM and affects the 
shape of the hyperplane. KernelScale determines how far the influence 
of a single training example reaches, with low values meaning ’close’ 
and high values meaning ’far’. In other words, it defines how the simi-
larity of any two points is calculated. In the RBF kernel, it’s related to the 
spread of the Gaussian function. For an RBF kernel, the impact of Kernel 
Scale (σ) is significant in determining how the algorithm generalizes 
from the training data to unseen data. A smaller σ leads to a model that 
captures finer details of the training data (risk of overfitting), while a 
larger σ results in a smoother decision boundary that may generalize 
better on unseen data (but risk of underfitting). 

3.6.1. Hyperparameter tuning using cross validation 
Cross-validation is a statistical technique used to assess the perfor-

mance of machine learning models. Its primary purpose is to prevent 
overfitting, which occurs when a model learns the training data so well 
that it performs poorly on new, unseen data. By using cross-validation, 
one can get a more realistic estimate of a model’s performance on 
data it hasn’t seen before. Cross-validation helps in identifying if a 
model is overfitting to the training data. In the following the Pseudocode 
of Cross validation is presented.  

1. Shuffle the dataset randomly.  
2. Split the dataset into k groups (or "folds").  
3. For each fold: 

a. Treat the current fold as the validation set and the remaining k-1 
folds as the training set. 

b. Train the machine learning model using the training set. 
c. Evaluate the model using the validation set and store the eval-

uation metric. 
d. Retain the model evaluation score and discard the model. 

4. Summarize the skill of the model using the sample of model evalu-
ation scores. 

3.7. The advantages of using cross-validation 

Cross validation has several advantages which are presented as 
follows:  

− Reduced Overfitting Risk: By rotating through different subsets of the 
data for training and validation, cross-validation helps ensure that 
the model isn’t simply memorizing the training data but is learning 
generalizable patterns. This process reduces the risk of overfitting, 
which is particularly important in complex models with many 
parameters.  

− More Accurate Performance Estimate: Since the model is evaluated 
across multiple subsets, the performance metric is typically more 
reliable and less dependent on the idiosyncrasies of a single train-test 
split. This averaged metric offers a more balanced view of model 
performance.  

− Model Robustness: Cross-validation tests the model’s ability to adapt 
to various subsets of data, enhancing its robustness. A model that 
performs consistently well across different folds is likely to be more 
stable and reliable when dealing with real-world, unseen data. 

Although Cross-validation increases the computational cost, but the 
advantages of cross- validation, overweight the drawbacks. Given the 

Table 4 
The optimum SVR hyperparameters for each target.  

Target Name Box Constraint Kernel Scale 

Temperature (℃)-Nickle-based alloy  995.1  3.6255 
Temperature (℃)-Duplex  236.83  0.017908 
Depth(mm)  186.84  4.3141 
Tensile Strength (MPa)  997.76  16.341  
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complexity of the dataset including four distinct targets. Due to the 
unique nature of each target, it becomes imperative to perform cross- 
validation separately for every individual target. This ensures that 
each target receives a tailored evaluation, optimizing the model’s per-
formance for that specific output. In Table4 the best-fit values of the 
hyper-parameters obtained by cross validation are presented. These 
hyper-parameters, namely the Box Constraint and the Kernel Scale, play 
a pivotal role in influencing the accuracy of the model. It’s these fine- 
tuned values that provide the foundation for the model’s reliable pre-
dictive capabilities. The Bayesian optimization procedure itself in-
corporates the 5-fold cross-validation. For each set of hyper-parameters 
being evaluated, the function will perform 5-fold cross-validation and 
compute an averaged loss across the folds. This averaged loss is then 
provided as feedback to the Bayesian optimizer, which uses this infor-
mation to suggest the next set of hyperparameters to try. In Table 4, the 
optimized hyperparameters are shown. 

4. Results and discussion 

In this section the results of the SVR and NSGA-II algorithm were 
presented in detail by considering different combination of processed 
data. Presentation of 35 solutions shows the potential of NSGA-II algo-
rithm to find the optimal results with numerous configurations. 

4.1. SVR Results 

In Figs. 6 to 13, for each target, two plots are generated. The first one 
depicts the minimum objective vs. the number of function evaluations 
and the second one shows the objective function model for that specific 
target during the optimization process. These figures provide a better 
understanding of the model optimization. 

Fig. 6 depicts Min objective versus Number of function evaluations 
for Temperature (℃)-Nickle based alloy. The results show that the 
observed and estimated minimum objectives present a clear conver-
gence, indicating that the SVR model effectively minimized the tem-
perature objective. 

Fig. 7 shows machine learning models fine-tuned for box constraints 
and kernel scales, aligning with experimental data. 

Fig. 8 exhibits Min objective versus Number of function evaluations 
for Temperature (℃)-Duplex. The rapid decline in the minimum 
objective reflects the SVR model’s efficiency in optimizing temperature 
control for Duplex stainless steel. 

Fig. 9 displays models optimized for box constraints and kernel scales 
to match experimental data. 

Fig. 10 illustrates Min objective versus Number of function evalua-
tions for Depth (mm). The model demonstrates a consistent decrease in 

the objective function for melt pool depth, validating the SVR model’s 
predictive accuracy. 

Fig. 11 illustrates models adjusted for box constraints and kernel 
scales, ensuring experimental data alignment. 

Fig. 12 shows Min objective versus Number of function evaluations 
for Tensile strength (MPa). The steep decline in the tensile strength 
objective indicates that the SVR model successfully optimized this crit-
ical characteristic. 

Fig. 13 demonstrates optimized box constraints and kernel scales, 
fitting experimental data. 

These results highlight the capability of the SVR model to accurately 
predict and optimize complex welding parameters, forming a robust 
foundation for subsequent optimization. 

4.2. Transition from predictive modeling to optimization 

Once a predictive model is established, the next crucial step is 
optimizing the input parameters to achieve the best possible outcomes. 
This phase translates predictive insights into strategies that enhance 
welding efficiency and effectiveness. The input parameters—laser 
power, welding speed, focal distance, and deviation—significantly in-
fluence key outcomes: the temperature near the melt pool in Nickel- 
based alloy and Duplex 2205, the melt pool depth, and the weld 
joint’s tensile strength. The optimization process aims to identify the 
best set of these parameters, requiring a multi-objective approach due to 
their competing nature. Multi-objective optimization finds the best 
trade-offs among different objectives, often visualized as a Pareto front. 
The NSGA-II algorithm effectively handles these conflicting objectives, 
providing a diverse set of optimal solutions. 

4.2.1. Definition of multi-objective function 
Optimization involves the process of identifying the most favorable 

solutions to a given problem. When dealing with multiple objective 
functions, particularly in scenarios where trade-offs exist among two or 
more competing objectives, multi-objective optimization becomes 
essential. This type of optimization is articulated as: 

A multi-objective function can be mathematically defined as a vector 
of k objective functions can be shown as Eq.7. 

F(x) = [f(x1), f(x2), f(x3),…, f(xn) ] (7)  

that are to be simultaneously optimized. Each objective function fi(x)
maps a decision vector x from the feasible set X⊂Rnto a real number, 
representing a distinct criterion to be optimized. Where n is the number 
of decision variables. In multi-objective optimization, the goal is not to 
find a single optimal solution but rather to identify the set of Pareto- 

Fig. 6. Min Objective value vs. function evaluations for Temperature (℃)-Nickle based alloy.  
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optimal solutions, where no single objective can be improved without 
degrading at least one of the other objectives. This formulation encap-
sulates the trade-offs inherent in simultaneously optimizing multiple, 
often conflicting, criteria, thereby directing towards solutions that best 
reconcile these competing objectives in a multi-dimensional decision 
space. One of the most common algorithms is this area is called Non- 
dominated Sorting Genetic Algorithm II. 

4.2.2. Non-dominated sorting genetic algorithm II (NSGA-II) 
The NSGA-II is an evolutionary algorithm designed for solving multi- 

objective optimization problems. It extends the classical genetic algo-
rithm by introducing mechanisms for sorting solutions based on domi-
nance and maintaining diversity. Deb et al. [33] formulation of the 
NSGA-II algorithm for multi-objective genetic algorithms has been 
fundamental. NSGAII, an evolutionary algorithm, has gained promi-
nence for its adept application in multi-objective optimization within 

Fig. 7. Objective function model for Temperature (℃)-Nickle based alloy.  

Fig. 8. Min Objective value vs. function evaluations for Temperature (℃)-Duplex.  

Fig. 9. Objective function model for Temperature (℃)-Duplex.  

H. Aghaei et al.                                                                                                                                                                                                                                  



Materials Today Communications 40 (2024) 109765

10

engineering contexts. The issues of computational complexity, 
non-elitism, and sharing parameter dependency in earlier algorithms are 
resolved, employing a faster sorting mechanism and an elitist strategy. 
Efficient convergence to the Pareto-optimal front is ensured, and the 
algorithm is shown to be particularly effective in constrained 
multi-objective scenarios. Multi-objective optimization challenges are 
efficiently addressed by the robust methodology of this algorithm, which 

employs a multi-layered structure to ensure both diversity and efficacy 
in optimization processes. Researchers highlight that NSGAII’s mecha-
nisms for determining crowding distances, implementing crowded 
comparison operators, and executing non-dominated sorting are both 
rapid and straightforward, offering an edge over other multi-objective 
optimization techniques in ensuring diversity. Recognized as an evolu-
tionary algorithm, NSGAII’s efficiency and effectiveness are further 

Fig. 10. Min Objective value vs. function evaluations for Depth (mm).  

Fig. 11. Objective function model for Depth (mm).  

Fig. 12. Min Objective value for the fourth target.  
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explored through key components such as Mutation. In this algorithm, 
each proposed solution or chromosome within the problem space com-
prises multiple dimensions, referred to as genes. Mutation involves the 
alteration of one or more of these gene values from their original state, a 
process crucial for introducing diversity and aiding in the discovery of 
novel solutions. The operational steps of NSGA_II are outlined as follows: 
Population Initialization, structured around variable constraints and 
ranges; Non-dominated Sorting, categorizing the population based on 
dominance criteria; Crowding Distance Calculation, applied post-sorting 
to assign crowding distance values and facilitating the selection of in-
dividuals based on rank and crowding distance; Selection, employing 
binary tournament or roulette wheel selection mechanisms inclusive of 
the crowded-comparison operator; Genetic Operations, utilizing Real 
Genetic Algorithm (GA) strategies for binary crossover and mutation 
processes; and Recombination and Selection, wherein the offspring 
population is merged with the current generation, and subsequent 
generation members are chosen until the population size matches that of 
the existing generation. Each front sequentially populates the new 
generation. The Pareto front, a key concept in these problems, consti-
tutes a set of optimal non-dominated solutions in the search space, 
depicted through the objective function space. The optimal solutions 
that form the first tier in this arrangement are identified as the Pareto 
front. Despite the effectiveness of conventional optimization techniques, 
they are prone to entrapment at local optima. Moreover, the conver-
gence efficiency of these algorithms often hinges on their initial starting 
points. Originating from Genetic Algorithm frameworks, NSGAII is 
specifically designed for multi-objective scenarios, focusing on the 
simultaneous optimization of each non-dominated objective. Each 
member of the population is compared against others in a pairwise 
fashion. The algorithm calculates the number of defeats each solution 
incurs against its counterparts. Solutions that remain undefeated in 
these comparisons are placed in the highest front, establishing a hier-
archy of solution quality. After isolating these elite, non-dominated so-
lutions, the algorithm repeats this sorting process for the rest. Ranking 
each member within their respective fronts is crucial, followed by the 
calculation of Crowding Distance (CD). The CD measure in the NSGAII 
algorithm is integral for differentiating between solutions within the 
same rank, particularly in a crowded front. The NSGAII algorithmic 
flowchart is visualized in Fig. 14. 

In Fig. 15 the crowding distance for two objectives is illustrated. 
Also, in higher dimensions, the same meaning is valid. 

Using crowding distance, prioritizes solutions with higher CDs, 
thereby fostering a broader spectrum of solutions. In this study, with the 
objective functions totaling four, the CD measure extends across a four- 
dimensional space, offering a nuanced approach to evaluating and 
optimizing a wide range of solutions. From this group, a select number 

(N) of superior individuals are chosen to advance to subsequent gener-
ations. This selection process emphasizes optimizing the population size 
beyond the initial count. For optimal performance, specific configura-
tions of the NSGAII algorithm are necessary, detailed in Table 5. 

4.3. NSGA-II results and discussions 

With four input variables and four target objectives, the optimal 
solutions are reported in Table 6. 

The NSGA-II optimization process has successfully identified a set of 
35 distinct solutions, corresponding to different configurations of the 
input vector x. Each of these solutions has been optimized to maximize 

Fig. 13. Objective function model for the fourth target.  

Fig. 14. The flowchart of NSGAII.  
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the four target functions including (Obj 1 for temperature Duplex, Obj 2 
for temperature Nickle based alloy, Obj 3 for depth of the melt pool and 
Obj 4 for tensile strength of the joint). It’s important to note that in the 
realm of multi-objective optimization, like that guided by NSGA-II, these 
solutions are part of a Pareto front. This means that while each solution 

excels in maximizing the target functions, they do so in varying degrees 
and combinations. To aid in the visualization and further analysis of 
these trade-offs, Fig. 16 shows a graphical view. In this figure, the trade- 
offs between all four target functions are illustrated for all 35 solutions. 

The nature of multi-objective optimization, especially when dealing 
with several target functions, inherently leads to solutions that excel in 
different areas, reflecting diverse trade-offs among the objectives. These 
trade-offs are a critical aspect of the NSGA-II approach. Given the multi- 
dimensional nature of the optimization, no single solution can be uni-
versally considered "the best" across all objectives. Each solution might 
excel in one or more objectives while making concessions in others. This 
aspect is a fundamental characteristic of Pareto-optimal solutions where 
improving any one objective can only be done at the expense of another. 
As a result, the prioritization among these 35 solutions depends largely 
on the specific needs and preferences of the decision-making scenario. In 
Fig. 16, the Pareto fronts illustrate the trade-offs between different ob-
jectives, providing a comprehensive view of the optimization landscape. 

4.4. Comparative analysis of all Pareto fronts 

4.4.1. Pareto front: Obj 1 vs. Obj 2 
This plot shows a clear trade-off between Objective 1 and Objective 

2. As Objective 1 increases, Objective 2 generally decreases. The front 
demonstrates a typical Pareto optimal relationship where improving one 
objective leads to a deterioration in the other. 

4.4.2. Pareto front: Obj 1 vs. Obj 3 
This plot shows a non-monotonic relationship between Objective 1 

and Objective 3. The points do not form a clear trade-off curve, indi-
cating that the relationship between these two objectives is more com-
plex and may have multiple regions of trade-offs. 

Fig. 15. The crowding distance.  

Table 5 
NSGA_II settings.  

Setting Value 

Population Size 100 
Number of Generations 400 
Crossover Probability 0.8 
Mutation Probability 0.025 
Selection Operator ’tournament’ 
Crossover Operator ’intermediate’ 
Mutation Operator ’gaussian’  

Table 6 
Optimal solutions obtained by NSGAII.  

Data Number x1 x2 x3 x4 Obj 1 Obj 2 Obj 3 Obj 4  

1  449.1011  105.2673  -1.4675  -0.4995  245.2319  367.3777  1.2123  340.1254  
2  449.2279  103.7722  2.1122  -0.4497  252.3585  356.3640  1.7811  321.5687  
3  449.3796  104.4169  1.6600  -0.0887  232.9175  403.3410  1.8739  333.6174  
4  449.2201  104.6030  4.4971  -0.4995  260.0072  311.9339  1.5470  303.9713  
5  449.4992  103.9074  -1.1270  0.3749  201.4943  443.9661  1.3908  357.9487  
6  449.2221  104.3889  3.7313  -0.4918  258.0454  325.9134  1.6637  309.4259  
7  449.3991  104.3521  -1.4625  0.4169  198.2926  441.0248  1.3181  359.9758  
8  449.5624  103.7941  -0.4284  0.3581  204.2528  445.9603  1.4756  353.5005  
9  449.2679  103.9128  -0.7783  -0.2756  236.1994  400.2198  1.5302  344.6128  
10  449.3725  103.9153  2.5100  -0.3244  247.0929  364.6121  1.8394  322.4059  
11  449.2922  103.5741  -0.0369  -0.1231  230.4263  417.5094  1.7307  344.3728  
12  449.5193  103.9421  -0.7601  -0.0399  224.2639  426.8988  1.6153  350.6622  
13  449.4978  103.9532  1.8296  -0.1653  237.4050  393.4224  1.8820  330.9754  
14  449.2270  104.4255  4.2546  -0.4910  259.1185  316.8519  1.5902  305.8745  
15  449.2464  102.9331  4.5000  -0.4999  260.2520  312.3729  1.5458  304.1858  
16  449.2278  104.0296  2.6559  -0.3824  250.2601  355.5518  1.8098  319.8001  
17  449.2505  104.4794  1.9452  -0.3094  244.8545  375.2984  1.8540  326.5548  
18  449.3977  103.2103  2.7205  -0.4934  256.0948  342.8604  1.7448  316.4114  
19  449.4012  103.8925  -0.6370  -0.0522  225.1756  425.7487  1.6372  349.6283  
20  449.2586  104.1588  1.0000  -0.2272  238.3642  397.6571  1.8351  335.0803  
21  449.2213  104.4004  4.0956  -0.4970  259.0778  319.1651  1.6120  306.8044  
22  449.1558  104.7331  1.6364  -0.3690  247.0208  372.3332  1.8163  326.9118  
23  449.3637  104.6083  -0.4276  -0.0917  227.6718  421.6426  1.6696  347.4048  
24  449.2679  104.0012  1.1889  -0.3482  245.0093  380.7152  1.7980  330.5808  
25  449.4985  103.9333  -1.3903  0.4140  198.7386  441.8132  1.3287  359.6227  
26  449.3537  104.6085  0.9973  -0.4520  249.6780  368.8663  1.7062  328.5410  
27  449.2767  105.1670  1.0862  -0.3748  245.9410  378.0732  1.7715  330.3051  
28  449.4176  103.5967  -0.1581  0.0388  221.7500  433.0303  1.7073  348.4371  
29  449.1358  105.5439  -0.6662  -0.4837  246.6478  371.1325  1.3975  336.7165  
30  449.2225  104.5939  3.3786  -0.4940  257.3558  331.6258  1.7009  311.7231  
31  449.3935  103.9259  1.4267  -0.3076  243.6234  383.2239  1.8368  330.2360  
32  449.3763  104.0396  2.2244  -0.1722  238.6504  385.4870  1.8738  327.9412  
33  449.2177  105.1708  1.1434  -0.4964  252.1011  361.1645  1.6851  326.0297  
34  449.3975  104.6592  -1.5000  0.4573  196.0180  439.8507  1.2804  360.2017  
35  449.1759  104.9301  3.0263  -0.4958  256.5898  337.0145  1.7276  313.9650  
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4.4.3. Pareto front: Obj 1 vs. Obj 4 
This plot shows a clear trade-off between Objective 1 and Objective 

4. As Objective 1 increases, Objective 4 tends to decrease, forming a 
well-defined Pareto front similar to the first plot, where one objective is 
sacrificed for the improvement of the other. 

4.4.4. Pareto front: Obj 2 vs. Obj 3 
This plot shows a non-monotonic relationship between Objective 2 

and Objective 3, with some segments where both objectives improve 
together and others where they trade-off. This indicates a complex 
interplay between these two objectives with no single trend dominating 
the Pareto front. 

4.4.5. Pareto front: Obj 2 vs. Obj 4 
This plot shows a complex Pareto front where the relationship be-

tween Objective 2 and Objective 4 is not straightforward. Initially, both 
objectives improve together up to a certain point, after which further 
improvement in Objective 2 leads to a deterioration in Objective 4. 

4.4.6. Pareto front: Obj 3 vs Obj 4 
This plot shows a non-monotonic Pareto front between Objective 3 

and Objective 4. The trade-offs are not consistent, with some regions 
where improvements in one objective correlate with improvements in 
the other, and other regions where trade-offs become evident. This re-
flects a multifaceted relationship between these objectives. 

The analysis of the six Pareto fronts highlights the varied and intri-
cate nature of the trade-offs between different objectives. While some 
pairs of objectives exhibit clear and straightforward trade-offs, others 
demonstrate complex and non-linear relationships. Understanding these 
dynamics is crucial for effective decision-making in multi-objective 
optimization, as it allows for a more nuanced approach to balancing 
competing objectives and finding the most suitable trade-offs based on 
specific goals and constraints. 

5. Conclusion 

This study focused on the dissimilar laser welding of Nickel-based 
alloy and Duplex 2205 stainless steel to create a comprehensive data-
set for process modeling and optimization. The input parameters 
included laser power, welding speed, focal distance, and deviation, 
while the target outputs were Temperature- Nickel-based alloy, tem-
perature- Duplex, Melt pool depth, and Tensile strength. Integrating 

Support Vector Regression (SVR) with the Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II) for multi-objective optimization yielded 
significant results. One of the key achievements of this study was the 
development of precise predictive models through SVR. These models 
were finely tuned using Bayesian optimization and cross-validation 
techniques to ensure high accuracy and reliability. The SVR models 
accurately predicted the target outputs based on the given input pa-
rameters, providing a robust tool for understanding the relationships 
between different welding parameters and outcomes. Through the 
application of the NSGA-II, the study identified 35 optimal input con-
figurations. These configurations form a Pareto front of solutions that 
balance the four target objectives: Temperature- Nickel-based alloy, 
Temperature- Duplex, Melt pool depth, and Tensile strength. The Pareto 
front represents the trade-offs between these objectives, allowing 
decision-makers to choose the most suitable configurations based on 
their needs and priorities. The comprehensive dataset created in this 
study includes a wide range of input parameters and corresponding 
outputs, enabling detailed process modeling. This dataset is invaluable 
for further research and development in laser welding, as it provides a 
solid foundation for understanding how different parameters affect 
welding quality and performance. Integrating advanced modeling 
techniques ensures that the insights gained are deep and actionable. The 
combination of SVR and NSGA-II represents a sophisticated approach to 
multi-objective optimization. SVR provides the predictive accuracy 
needed to model complex relationships, while NSGA-II offers a powerful 
method for exploring the trade-offs between multiple objectives. This 
integration ensures the optimization process is thorough and efficient, 
leading to high-quality solutions that can significantly improve welding 
processes. The solutions identified in this study allow decision-makers to 
navigate complex trade-offs effectively. Understanding the Pareto front 
will enable them to make informed choices that align with specific in-
dustrial and research needs. For instance, if a higher tensile strength is 
required, they can choose configurations that achieve this at the expense 
of other objectives like melt pool depth or temperature control. The 
study’s outcomes highlight the importance of precise heat input control. 
By optimizing laser power, welding speed, focal distance, and deviation, 
it is possible to achieve superior weld quality. This study’s advanced 
modeling and optimization techniques demonstrate their effectiveness 
in reaching these goals, providing a clear pathway for improving 
welding processes in industrial applications. 

Fig. 16. All Pareto fronts of four objectives.  
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Future works 

Some possible future works can be applying the identified optimal 
welding parameters and predictive models for real-time adjustments to 
enhance weld quality and performance in practical applications. Also, 
extending the methodology to other materials and welding processes, 
refining models and algorithms, and integrate them into industrial sys-
tems for real-time optimization and adaptive control, thereby improving 
precision, flexibility, and overall welding efficiency. 
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