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ABSTRACT

In this study, the experimental results of fiber laser cutting of Inconel 600 was modeled and optimized by combining artificial neural net-
works (ANNSs) and particle swarm optimization (PSO). The impact of cutting criteria on the temperature adjacent to the cut kerf and
roughness of the cutting edge was experimentally evaluated. The independent variables are the cutting speed, focal length, and laser power.
The fiber laser cutting characteristics are modeled at different cutting conditions by the ANN method according to the experimental data.
The findings indicated that the ANN is performing reasonably well in dealing with the training and test datasets. Also, the multiobjective
PSO has been developed to effectively optimize the laser cutting procedure parameters in order to achieve the maximum temperature (the
temperature upper than 370 °C) and minimum roughness (lower than 3 um) simultaneously in order to improve the laser cutting efficiency.
Based on the PSO results, the optimal laser power gained at a laser power of 830 and 1080 W at cutting speed ranges from 2 to 4 m/min
and maximum focal length ranges between 0.75 and 0.8 mm where the lowest amount of roughness was created. The optimum temperature
ranges were between 370 and 419°C. At a laser power of 1000 W and speed of 4 m/min, the smooth cutting edge at minimum roughness
was gained without any defects. Transmission of the focal point up to 1.5 mm below the top surface of the sheet improved the roughness of
the cutting edge and the cut quality by producing the smooth surface without slags.

90:66:Z1 £202 JOGWBNON €0

Key words: Inconel 600 alloy, laser cutting, particle swarm optimization, artificial neural networks

Published under an exclusive license by Laser Institute of America. https://doi.org/10.2351/7.0001231

1. INTRODUCTION technologies, the use of laser beams for cutting became the focus of

The use of advanced technologies in industries is an inevitable scientists and craftsm.en around th-e w9rld. The. reason for using
part of the modern manufacturing process. One of the most these beams to f:lt different materials is the unique properties of
important things in manufacturing and producing different parts is this technology.™” This method is one of the most common and
the need to cut and connect materials to each other.”’ Various  fastest methods used to cut complex geometries.” Also, by changing
methods have been used by humans to cut different materials. the process parameters and obtaining the optimal parameters, the
With the advancement of science and the emergence of new best cutting quality can be achieved.””” In addition, the use of
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devices such as CO,, Nd:YAG, and fiber laser to cut various mate-
rials is very common. In recent years, the need to use metals with
high mechanical strength and corrosion resistance at high tempera-
tures has been considered by various industries. One of the most
widely used materials in various chemical, marine, and aerospace
industries for the manufacture of a high-pressure equipment is
Inconel 625.''" Therefore, the use of laser technology for cutting,
due to the difficult working conditions for this type of metal, is a
suitable method.'” Also, to achieve a standard and appropriate cut,
the use of numerical methods can be very suitable along with
experimental methods. One of the numerical methods that has
become popular among researchers in recent years is the use of
artificial neural networks (ANNs).'*~'® ANN modeling and multi-
objective manufacturing process optimization is a potent and effec-
tive method for addressing complex production issues.'”~'” Because
they can use input data from a range of sources, such as production
time, energy usage, material cost, and quality, ANNs have an
advantage in that they can use these input data to forecast out-
comes and optimize the manufacturing process. ANNs are excellent
for manufacturing optimization because they can recognize pat-
terns in data and adjust to changing circumstances. Manufacturers
can optimize their production process with the help of ANNs to
increase productivity and cut expenses. Furthermore, by maximiz-
ing the process to produce the highest overall performance, ANNs
can be utilized to balance opposing goals, such quality and
cost.”’™* In addition, machine learning and model-based optimiza-
tion have grown in importance as techniques for optimizing the
effectiveness of the manufacturing process.”” >> Manufacturers may
evaluate their data and develop models that anticipate the best
method to produce items, from improving the production process
to predicting output quality, by applying machine learning algo-
rithms. Manufacturers may improve their processes depending on
a variety of factors, including cost, quality, and speed, using multi-
objective optimization. Manufacturers can locate production bottle-
necks, choose the best production processes, and increase
productivity by combining machine learning and optimization
approaches. Manufacturers can develop a production process that
is more productive and economical with the use of machine
learning.”™*" Roy et al.”’ studied the cutting quality of laser on
Inconel 625 super alloy in different environments. Their results
showed that laser power is the most sensitive controllable variable
for cutting depth. Sensitivity analysis also showed that the depth is
more sensitive with higher air pressure while it is negatively sensi-
tive with water column height. Shrivastava et al.’' predicted and
evaluated the optimal cutting quality of the Inconel 718 sheet using
different numerical methods. By developing the ANN method and
using genetic algorithms and particle swarm optimization tech-
niques, they introduced the optimal parameters of the process to
achieve an ideal cut. Vagheesan et al’® obtained the optimal
parameters of the laser cutting process using an ANN-genetic algo-
rithm and ANN-particle swarm optimization (PSO) hybrid model-
ing. The results showed that the combined model ANN-GA and
ANN-PSO is an efficient tool for optimizing process parameters in
laser cutting. It was also found that the ANN-GA hybrid model is
very useful to obtain the kerf width, kerf taper, and minimum
roughness. Using a numerical simulation based on regression,
Shrivastava et al.”> obtained the optimal parameters of the Inconel
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718 alloy laser cutting process. The results showed that by compar-
ing the optimal process parameters with the experimental results,
high quality cutting can be achieved. Chaki et al.”* performed mul-
tivariate optimization for optimal parameters of the laser cutting
process using the ANN-NSGAII model. The results showed that
the prediction accuracy of the ANN module was very good. By
comparing the results with the optimized experimental results, only
less than 1% error was observed. In a numerical study, Roy et al.””
analyzed the sensitivity of parameters affecting the cutting quality
of the Inconel 625 alloy laser. The results showed that all Nd: YAG
laser parameters can affect the cutting width, and the sensitivity
effect of pulse frequency and cutting speed parameters is less than
laser power. Roy et al’® in an experimental study evaluated the
quality of laser cutting on the Inconel 625 alloy. Their results
showed that the use of appropriate parameters in the laser cutting
process can improve the quality of the cut. Wei et al.”” examined
the cutting kerf size and microstructure of the cutting area on the
Inconel 738 superalloy in the femtosecond laser cutting process.
The results showed that Defocus is a key parameter in cut kerf size.
Also, changing the scan speed can lead to changes in the micro-
structures of the cutting region. Jafarian et al”® conducted studies
to evaluate the hardness and roughness of the surface of the
Inconel 718 alloy in the laser cutting process. They investigated the
laser cutting parameters using experimental studies and an ANN
model. The results showed that the use of this model can lead to
increased cutting accuracy as well as the appropriate quality of kerf
width and surface roughness. Tebassi et al.’” used the ANN
method and the response surface (RSM) method to model the
surface roughness and cutting force on the Inconel 718 super alloy.
Their results showed that the use of ANN compared to RSM is a
reliable, accurate, and better method for predicting and detecting
nonlinear mathematical models of surface roughness and cutting
force in terms of correlation and error. Nukman et al.*’

The experimental data of the Taguchi L9 orthogonal array were
used to train the ANN model. The simulation results showed that
due to the advantages of the developed GA-Taguchi ANN model
in manufacturing processes, the maximum prediction error can be
reduced below 10%. Grepl et al.*' investigated the effect of process
parameters on laser cutting of the Inconel 625 alloy. The results
showed that increasing the inert gas pressure, reducing the nozzle
distance to the workpiece surface, and decreasing the speed of laser
can lead to an increase in the spot radius of the beam. Using multi-
ple regression analysis (MRA) and ANN, Radovanovi¢ et al.** per-
formed an adaptive modeling for the CO, laser cutting process. By
comparing the experimental results and the predictions of the
models, it was found that the ANN model provides more accurate
predictions compared to the MRA model. Using a
Taguchi-artificial neural network hybrid numerical model, Yang
et al”’ introduced a predictive model of the CO, laser cutting
process. The results showed that the artificial neural network has
good capability and accuracy in predicting the laser cutting process.
Also, the use of the Taguchi method is very accurate in some cases
and regions near the Taguchi control points. Using an ANN
model, Tsai et al.** obtained the optimal laser cutting parameters
for QFN packages. The results showed that the ANN model has a
good ability to predict the laser cutting quality of QFN packages. It

performed i
laser cutting optimization using an artificial neural network model.
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was also found that using the optimal parameters, the width of the
heat affected zone is reduced. There are some studies that used the
hybrid approach of ANN and combination of PSO and other opti-
mization algorithm to model and optimize the laser cutting
process. Pramanik et al.** investigated low-power fiber laser cutting
of titanium alloy using particle swarm optimization methods. The
quality characteristics including kerf taper and heat-affected zone
were considered the responses according to utilizing the laser
sawing strategy.

Chaki et al. evaluated the efficiency of entropy-based ANN-
PSO model for optimization of cutting quality in pulsed Nd:YAG
laser cutting of aluminum alloy. The kerf width, kerf deviation,
surface roughness, and material removal rate were output parame-
ters. The prediction accuracy of the ANN module and the opti-
mized output was about 1.74% error and less than 2% error,
respectively.'® Shrivastava et al."” developed a prediction model for
Nd:YAG laser cutting to achieve better cutting quality, precision,
and geometrical accuracy using the artificial neural network tech-
nique. These predicted models have been optimized using a multi-
objective genetic algorithm and particle swarm optimization
techniques, in order to ascertain the optimal range of cutting
parameters.

This research was conducted to effectively model the impact
of fiber laser cutting measures on cutting region temperature and
roughness of cutting edge of the Inconel 600 alloy sheet. Then
based on the PSO algorithm, the independent variables (e.g.,
cutting speed, focal length, and power) were chose to achieve the
lowest roughness and highest temperature during laser cutting of
the Inconel 600 sheet.

Il. MATERIALS AND METHODS
A. Experimental setup

A 3 axis laser cutting Computer Numerical Control (CNC)
equipped with a single module fiber laser source with the highest
output power of 1500 W and Raytools autofocus BM109 cutting
head was employed for cutting tests. For the cutting procedure,
oxygen gas at a pressure of 8 MPa and 99% purification through a
copper nozzle was employed. K-type thermocouples were utilized
at a distance of 2mm from the center of the cut kerf region to
measure the temperature at two different locations. The thermo-
couples’ signal is transformed to the temperature via the Advantech
USB4718-module and LABVIEW developed software. The material
utilized for cutting was Inconel 600 with 1.5mm thickness. The
Olympus SZX-18 stereoscope was applied to provide the striation
pattern of the cutting edge. A 3 axis HS-GB-22EQ CNC machine
was employed for cutting procedures. A Mahr Perthometer M2 was
applied to analyze the cutting edge surfaces roughness.

B. Laser cutting experiments

To determine the impact of cutting parameters on the quality
of the cutting edge and the cutting region’s temperature, laser
cutting tests were undertaken. Before executing the main set of
experiments, a series of preliminary experiments was performed to
select the main parameters’ level limitations. The laser cutting
parameters’ levels are provided in Table 1.
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TABLE I. Laser cutting parameters’ levels selection.

Parameters Levels
Cutting speed (m/min) 2-10
Focal length (mm) 0.4-0.8
Power (W) 800-1200

Generally, measuring the temperature during cutting can
give a clear threshold level for parameters’ selection in order to
evaluate the cut quality indirectly at lower cost and time. Then,
based on the provided results from the experiment, the ANN
method can develop a highly economic and cost-effective way
to predict the cut quality. Measuring the temperature not only
evaluate cutting condition but also give a quantitative criterion
to select the cutting parameters at the appropriate region. For
cutting of Inconel 600, the temperature below 340 °C resulted in
incomplete cut kerf and creation of some slags at the cutting
edge. High level of temperature resulted in burning corners,
wide kerf, and even rough striations at cutting edge due to
experiencing excessive heating cycles. Seemingly, the appropriate
temperature during the cutting process can effectively monitor
the cutting condition, and thereby, it could be useful to evaluate
the cut quality with suitable precision. A schematic and actual
vision of the laser cutting tests is observed in Fig. 1. The ther-
mocouples were attached at the bottom surface of the Inconel
600 sheet, and the temperature near the cutting region was
measured by the thermocouples via USB 4718 and LasVIEW
software. Generally, the temperature is measured from the
bottom surface of the Inconel 600 sheet where the nozzle tip of

the laser cutting head has not any limitation for cutting and i
collision with the thermocouple tip. Some grooved were ¢

engraved at the bottom surface of the sheet up to 0.8 mm thick-
ness to locate the thermocouples. The laser beam location has
had a distance of 2mm from the thermocouple tip from the
top surface as shown in Fig. 1(b). Then the thermocouple signal
transmitted to the USB4718 module to grab and process by
LABVIEW software. Before executing the laser cutting experi-
ments, all thermocouples were calibrated at the ranges between
0 and 200 °C with the maximum error of 1% in the measure-
ment range.

Additionally, Table II illustrates all selected parameters to
effectively assess the impact of cutting parameters on heat near the
cutting zone and roughness of the cutting edge. Also, Table II enu-
merates the input and output parameters that were considered in
the training process of the ANN. In this research, 21 experiments
were done to examine the effect of cutting parameters on cutting
zone heat and cutting edge roughness. The independent variables
were the cutting speed, focal length, and power, while the depen-
dent variables were the maximum temperature and minimum
roughness. The cutting velocity was varied between 2 and 10 m/
min, while the power ranged from 700 to 1200 W, and the focal
length was in the interval between 0.4 and 0.8 mm. The aim of the
study was to minimize both temperature and roughness, with a
minimum temperature threshold of 370 °C.
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b) Laser
cutting Thermocouple
head a

0. 8mm ‘
~—-‘ FIG. 1. Laser cutting experimental
setup: (a) Actual view; (b) schematic

. Striation pattern vision.
-
Cut kerf

1. Cutting parameters’ impact on the cutting edge
state

The outcomes of the experiments are presented to evaluate
the impacts of cutting velocity, focal length laser, and power on the
cutting edge state. Thus, the SEM images from the cutting edge
section were provided to evaluate the impact of cutting situation on
cutting edge quality. Figure 2 illustrates the influence of cutting
velocity on the cutting edge situation. At light level cutting velocity
[Fig. 2(a)], some dross attachment at the bottom side of the cutting

TEMPERATURE
. LABVIEW

heating, the volume of melted materials increased more than
optimal cutting condition, and the cutting edge surface seems to be
more rough. At optimum cutting speed [see Fig. 2(b)], the cutting
edge surface seems to be smooth, and no slags or dross is observed.
At high cutting speed [see Fig 2(c)], the striation lines are not
straight and seems to be thicker than optimum condition.
Moreover, some slags are observed at the bottom of the cutting
edge, which, in turn, increase the average cutting edge measured
roughness.

Published under an exclusive license by Laser Institute of America

edge was observed. Additionally, due to the accumulation of laser 2
g
e

TABLE II. Inputs and outputs of test findings. i
o
N

Cutting Max. Focal 2

Test speed  temperature length Power Roughness 8

number (m/min) (°C) (mm) (W) (um) &

1 8 255 0.7 800 4.98

2 8 390 0.5 1000 3.12

3 4 355 0.7 800 3.31

4 4 470 0.7 1000 2.61

5 4 510 0.5 1000 245

6 6 440 0.4 900 2.85

7 6 339 0.8 900 341

8 10 246 0.6 900 5.11

9 4 410 0.5 800 4.82

10 2 470 0.6 900 2.58

11 6 390 0.6 900 2.98

12 8 315 0.7 1000 4.68

13 8 300 0.5 800 4.83

14 6 317 0.6 700 3.85

15 6 458 0.6 1100 2.68

16 10 232 0.6 1000 5.25

17 10 274 0.6 1200 491

18 10 208 0.6 800 5.34

19 4 540 0.5 1200 2.35

20 4 320 0.8 1200 348 FIG. 2. The impact of cutting velocity on the striation pattern at 1000 W and

21 4 387 0.7 1200 3.15 focal length of 0.5 mm for cutting velocity of (a) 4, (b) 8, and (c) 10 m/min.
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Generally, selection of laser cutting velocity and power is
highly depending on each other. Commonly, highest cutting is
selected according to highest level of the laser source power.

As it is seen in Fig. 3, the impact of power levels has been
evaluated on the cutting edge quality condition. As shown in
Fig. 3(a), at a low power level of 800, due to having insufficient
laser beam energy, there is no clear striation pattern at the cutting
edge, and many slags are viewed at the bottom side of the cutting
edge. Hence, due to having uncompleted melting of the materials
at the cut kerf, most of the melted material at the upper side of the
edge have been solidified at the lower side of the edge and formed
slags along the cut kerf. At laser power of 1000 W [see Fig. 3(b)],
the smooth cutting edge with the straight striation pattern is
observed without any slags or dross. This cutting condition leads to
minimum roughness in comparison to other conditions. At higher
level of laser power of 1200 W, the striation pattern seems to be
thicker than 1000 W. On the other hand, some attached dross is
observed at the bottom side of the cutting edge. Therefore, it leads
to the maximum roughness of the edge.

Generally, the focal point assesses the position of the
maximum energy level of the beam for the laser cutting procedure.
By changing the focal point condition from the top side of the
sheet to the bottom side, the striation pattern at the material thick-
ness according to the changes in the materials flow from the
laminar layer to the turbulent flow altered the cutting. Figure 4(a)
illustrates the cutting edge condition when the focal point position
has a distance of —1 mm below the top surface of the sheet. Below
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the focal point because of having the turbulent flow and lower
energy density, the melting efficiency has reduced and some cavi-
ties created at the region of the bottom surface of the sheet.
Furthermore, the back-flow rate of the melted materials adjacent to
the kerf wall has influenced the striation pattern of the cutting edge
from straight to the curvy lines. Figure 4(b) implies on the focal
point situation of —1.5 mm from the sheet top side (the focal point
located at the bottom of the sheet). Due to having highest level
energy density along the sheet thickness, the material flow rate has
been uniform and thereby smooth cutting edge surface created
without any dross formation or defects. Figure 4(c) shows the
appearance of the cutting edge when the laser beam focal point
located at the top surface of the sheet. In this case, attached slags are
explicitly viewed at the bottom side of the cutting edge, and the stria-
tion lines have been significantly deviated from the straight path of
the cutting kerf wall. Therefore, insufficient level of beam energy
transformed the melted material flow direction and a considerable of
solidified dross attached to the bottom of the cutting edge.

lll. ARTIFICIAL NEURAL NETWORK MODEL

As mentioned earlier, there are three continuous variables as
predictors, namely, the cutting velocity, focal length, and power.
Also, the maximum heat and roughness are the outputs evaluated
by the tests. Only 21 experiments are conducted due to the limited

Published under an exclusive license by Laser Institute of America
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FIG. 3. The impact of power on the striation pattern at 4 m/min and focal length FIG. 4. The impact of laser focal length on the striation pattern at 1000 W, 4 m/
of 0.5 mm and power of (a) 800, (b) 1000, and (c) 1200 W. min and focal length distance from top side at (a) —1, (b) —1.5, and (c) 0 mm.
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FIG. 5. A schematic slight of the ANN architecture.

time and cost. Therefore, a regression method is needed to interpo-
late between the conducted experiments. An ANN model is used
for this purpose. The ANN has two hidden “tansig” layers and one
“purelin” output layer. The number of hidden neurons is deter-
mined by trying out all possible numbers and finding the MSE
between the outputs and targets. The number of hidden neurons
that corresponds to the minimized average MSE is selected. In this
research, the number of hidden neurons is 17 and 9. There are two
models with three inputs and one output. The “trainbr” method is
utilized for supervised learning. A schematic slight of the ANN
architecture is demonstrated in Fig. 5.

In Fig. 6, the ANN training performance graphs for the
maximum temperature and roughness are plotted. These graphs
show the MSE values for not only training but also test datasets
over the training iterations (i.e., epochs). The graphs illustrate how

common way to visualize the performance of the ANN. In a good
regression plot, the data points should be close to the diagonal line,
which represents a perfect match between the targets and the
outputs. The nearest the data points are to the line, the better the
model’s performance. In this case, the plots show that the ANN is
performing reasonably well, with most of the data points clustered
close to the diagonal line. However, there are also some points that
are further away from the line, indicating that the model is not
perfect and there is room for improvement.

As shown in Fig. 8, the error histograms of the ANN represent
the distribution of errors between the predicted outputs and the
actual targets for both the training and test datasets. These histo-
grams provide insight into the accuracy and consistency of the
ANN model in predicting the target variables. A well-performing
model would have error histograms that are centered around zero

well the ANN is performing during the training process. Based on and have relatively low variance, indicating that the predicted g
the results, the ANN converges to a minimum MSE value, and the values are adjacent to the real values. As can be seen, the error dis- &
training is halted to prevent overfitting. tribution is acceptable in this case. 3
Figure 7 illustrates the regression plots for the maximum tem- Figures 9 and 10 depicted the results of the trained ANNs. &
perature and roughness. The plots show the outputs plotted against The maximum temperature and roughness are plotted for dissimi- §
the targets for both training and test datasets. This type of plot is a lar values of the cutting velocity, focal length, and power. R
4y
§
Training Performance 10%E i . Trainingl PerforlmanceI : . }
Train Train
Test A
104 ................ Best |4 [ [ Best
101 L .
7 B 100 ]
s = 1
TR
10? V &
10F ' ]
s j\ N
&/
10°k L 1 1 1 . 102k 1 1 1 1 1 1 L 1 E
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FIG. 6. The ANN training performance graphs for (a) the maximum temperature and (b) roughness.
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FIG. 7. The regression plots for (a) the maximum temperature and (b) roughness.
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z
IV. PSO OPTIMIZATION ALGORITHM A. Motivation E
3
In the presented part, the multiobjective PSO optimization A flock of birds that are in motion over an area must find &
algorithm is described. Also, the usage of the PSO algorithm for a point for landing. In this situation, determining the point 3
optimizing the fiber laser cutting characteristics of the Inconel 600 where all the birds should land is a complex problem because g
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food resources, the risk of predators at the landing point, the flock. Using this awareness, each member of this flock balances
distance to the target landing site, the terrain features, the wind their “personal experience” and “social knowledge.” Finding the
conditions, and any other relevant factors. The birds move best landing point is an optimization problem. They would
simultaneously for a period of time to determine the best place need to come up with a method for optimizing the objective
to land, and the whole group lands simultaneously. Research on function. The group would also need to consider any con-
bird behavior indicates that all birds in a flock that are looking straints or limitations that could affect the landing. They would
for a good landing point are able to become aware of the best need to test their landing strategy to ensure that it is safe and
landing point when it is found by one of the members of the effective.
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B. PSO technique

PSO is a powerful optimization technique derived by the
social behavior of birds and insects. In PSO, a population of particles
is used to explore the search space and find the optimal solution to a
given problem. Individuals in a group are able to coordinate their

movements to achieve a common goal.

At the start of the PSO algorithm, a particles population is

randomly created. Each particle presents a potential solution to the

problem being optimized. Each particle is also assigned a velocity,
which determines how fast the particle moves in the search space.

According to the present location of particle’s and considering the
best spot, it has yet looked at the algorithm updates the speed at

each iteration. The best position reached by any particle in the pop-

ulation is referred to as the “global best,” while the best position
reached by any individual particle is referred to as the “personal

best” of that particular particle.

The movement of the particles in the probe area is guided by

two factors: their personal best position and the global best position.
These factors influence the direction and speed of the particles’

movement, with the goal of finding the optimal solution to the
problem. In each iteration of the algorithm, the position and velocity
of each particle are updated according to the following equations:

Vit + 1) = V(1) + i (1) phest] — (1)

+ cary(t)(gbest! — x(1)),

Xt +1) = () + it + 1),

where v/(t) is the speed of particle i in iteration j at time #, x/(t) is
the running position of particle i in iteration j at time ¢, pbest’ is the
personal best position of particle i in iteration j, ghest’ is the global
optimal position in iteration j, @ is the weight, and ¢; and ¢, are

coefficients of acceleration.

r1 and r, are random amounts between 0 and 1 that determine
the influence of the personal proper and global proper positions on
the particle’s motion. The inertia weight @ determines the tradeoff

@)

between local and global discovery. A high value of w favors global
exploration, allowing the particles to move fast in the probe zone
and discover new regions. A low value of @ favors local exploration,
allowing the particles to converge to the best solutions found so far.
The acceleration coefficients ¢; and ¢, control the influence of the
global perfect and personal perfect positions on the particle’s
movement. A high value of ¢; favors discovery of the personal best
position, while a high value of ¢, favors discovery of the global

optimal position.

PSO has several advantages over other optimization algo-
rithms: It is relatively easy to implement and can handle nonlinear
and nonconvex problems with multiple optima. The PSO is also
computationally efficient and can converge quickly to the optimal
solution. However, PSO also has some limitations. It can be sensi-
tive to the selection of parameters, such as the acceleration coeffi-
cients and the inertia weight. In addition, PSO may converge
prematurely to a suboptimal solution if the particles become

trapped in a local optimum.

The flowchart for the PSO technique is illustrated in Fig. 11.
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FIG. 11. The chart for the PSO technique.

J. Laser Appl. 35, 042060 (2023); doi: 10.2351/7.0001231
Published under an exclusive license by Laser Institute of America

35, 042060-10


https://pubs.aip.org/lia/jla

Journal of

Laser Applications

C. Multiobjective PSO technique

Multiobjective PSO, a variation in the basic PSO method, is
intended to address optimization issues involving multiple, oppos-
ing objectives. In multiobjective PSO, each particle’s fitness is eval-
uated based on multiple objective functions that represent different
optimization goals. To solve multiobjective problems, multiobjec-
tive PSO utilizes a concept known as Pareto dominance. A solution
is said to dominate another solution if it is better than the other
solution in at least one objective and not worse in any other objec-
tive. By introducing Pareto dominance and other mechanisms to
facilitate exploration and exploitation of the search space, multiob-
jective PSO can generate a diverse set of nondominated solutions
that represent trade-offs between competing objectives. The multi-
objective PSO produces a set of optimal solutions that provide
decision-makers with a range of trade-off options between different
objectives. Multiobjective PSO also introduces new mechanisms to
facilitate exploration and exploitation of the search space. One
common approach is to use diversity measures to encourage parti-
cles to search for solutions in different regions of the search space.

D. Multiobjective optimization of fiber laser cutting
characteristics

Selecting the optimal parameters ranges has been the main
goal of this study. In this study, the minimum value of surface
roughness has been the major measurement according to the inter-
action with other parameters. Furthermore, in most cases, the tem-
perature higher 350 °C clearly ends in minimum roughness in case
of creating a smooth cut kerf region with minimum slags.
Therefore, the investigated set of parameters at lower speeds and
higher laser power could produce the appropriate quality. The
roughness values below 2.8 um could be a threshold level for select-
ing the suitable condition. Seemingly, the parameters’ interactions
could have drawbacks on the resultant roughness and cut quality.
Low cutting speed and very much high power can have a detrimen-
tal effect on cut quality by excessive heating and high spattering
although has been a criterion on selecting the optimal parameters.
Hence, the multiobjective optimization algorithm can play an
important role in selecting the optimal parameters.

The maximum temperature and roughness are the objective
functions. These two objectives are considered in the multiobjective
optimization where the goal is to minimize both objectives simulta-
neously. In multiobjective optimization with two objectives, the
result is often a set of solutions that lie on a Pareto optimal front.
In this case, the Pareto optimal front would represent the trade-off
between minimizing the maximum temperature and minimizing
the roughness. The solutions on the Pareto front would be consid-
ered the best solutions since they cannot be improved in one objec-
tive without sacrificing performance in the other. The result of a
Pareto optimal front can be visualized using a scatter plot, with the
maximum temperature on the x-axis and the roughness on the
y-axis. Each point on the plot represents a solution, and the Pareto
front is the set of points that cannot be improved in one objective
without sacrificing performance in the other.

The shape of the Pareto front is important because it gives
insight into the nature of the trade-offs between the objectives. The

ARTICLE pubs.aip.org/lia/jla

TABLE lll. Optimal independent and dependent variables.

Focal Max.
Cutting speed  length Power  Roughness temperature
(m/min) (mm) (W) (um) (°C)
4.39 0.75 840 3.00 370
4.04 0.77 835 291 371
2.21 0.79 1069 2.07 409
3.42 0.79 1083 2.41 395
2.66 0.80 1081 2.18 398
3.90 0.79 1079 2.57 392
3.55 0.79 1083 2.46 394
3.63 0.79 830 2.82 372
2.05 0.79 1043 2.02 419
2.04 0.79 1018 2.01 424
3.40 0.79 831 2.76 376
3.37 0.79 837 2.73 380
291 0.80 1081 2.24 397
241 0.80 1081 213 400
3.05 0.78 830 2.70 383
2.27 0.79 1052 2.05 415
2.50 0.80 1059 2.10 408
4.39 0.75 840 3.00 370

Pareto optimal front is illustrated in Fig. 12. The concave Pareto
front indicates that the trade-offs are almost severe.

The Pareto optimal front can be used to identify a solution
that balances the objectives in a way that is most suitable for the
problem at hand. The optimal independent and dependent vari-
ables are presented in Table III. As can be seen, there are two
optimal powers of about 830 and 1080 W. The former results in

lower maximum temperature and higher roughness, while the latter ¢

causes higher temperature and lower roughness. Also, the cutting
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FIG. 12. The Pareto optimal front.
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FIG. 13. The distribution of the optimal points in the input domain.

velocity ranges from 2 to 4 m/min in all the optimal cases, which is
almost low in the studied range. Furthermore, in all optimal cases,
the focal length is almost maximum. The distribution of the
optimal points in the input domain is illustrated in Fig. 13.

V. CONCLUSION

The present study aimed to determine the impact of laser
cutting measures on the temperature and surface roughness of the
cutting edge of Inconel 600 sheets, utilizing the error back propaga-
tion method. The “trainbr” learning technique was chosen for
network training, given its fast convergence rate. The findings of
the study can be summarized as follows:

o The network architecture exhibited the lowest relative error.

o For temperature and surface roughness, the ideal number of
neurons in the hidden layer was identified.

o The impressive performance of the used ANN was revealed by
the high correlation R values in the training and testing phases.

o The experimental result showed that high cutting speed at low
level of laser power and focal point positon at the surface of the
Inconel 600 sheet produced the high roughness and low cut
quality due to creating slags and incomplete melting of the
materials.

o There are two optimal power of about 830 and 1080 W. The
former results in lower maximum temperature and higher rough-
ness, while the latter causes higher temperature and lower
roughness.

« The cutting velocity ranges from 2 to 4 m/min in all the optimal
cases, which is almost low in the studied range.

« In all optimal cases, the focal length is almost maximum in case
the focal point has been located below the sheet surface at least
about 1 mm.

o The temperature ranges’ optimization was performed according
to selecting the ranges’ limit between 370 and 419°C that
completely melt the material and prevent creating defects such as

ARTICLE pubs.aip.org/lia/jla

dross attachment and melted material accumulation at lower part
of the cut kerf.

o At laser power of 1000 W and speed of 4 m/min, the smooth
cutting edge at minimum roughness was gained without any
defects. At laser power of 830 W and cutting speed of 3 m/min
and focal length of 0.78, the minimum roughness of 2.7 um is
gained. Hence, it can be concluded that a higher laser power
level more than 1000 W can offer wider ranges of speed and
focal length for selecting optimal parameters because of having
more efficient melting eligibility.
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