ارائه یک روش بازخورد ربط با رویکرد اصلاح معيار شباهت در یک سيستم بازيابي تصویر مبتنی بر چاپگرني فازي تصاویر اشعه X پيزيگي با گراف نسبی ويزغي دار فازي

حسين پورقاسمى(1) - حسن قاسميان(2)

1 استاديار - دانشگاه آزاد اسلامی، واحد نجف آباد
2 استاديار - دانشگاه برق و كامپيوتری، دانشگاه تربت حيدر

تاريخ پيداش: ۱۳۸۹

خلاصه: چیت بهبود عملکرد سیستم‌های بازیابی تصویر براساس محتما از روشهای بازخورد ربط ای استفاده می‌شود. در این مقاله، یک روش جدید بازخورد ربط با رویکرد اصلاح معيار شباهت در یک سيستم بازيابي تصویر مبتنی بر چاپگرني فازي تصاویر اشعه X پيزيگي با گراف نسبی ويزغي دار فازي، به درخواست‌های ورودی برای روشهای بازخورد ربط استفاده می‌کند. این روش به روش سنتی پيسي‌هاي چاپگرني فازي تصاویر با دقت باشماکي و گراف چيت تعريف معيار شباهت از یک گروهيي ماژلان ميليكي به تقييم ضعف جسمان در پايان داده استفاده مي‌دهد.

کلمات کلیدي: بازخورد ربط، سیستم بازیابی تصویر براساس محتما، گراف نسبی ویژگی دار، فازی، معيار شباهت.
یک پایه‌گذاری در تصفیه‌های کاربردی است. در این کریپتوگرافی، درجه اهمیت روند تهیه می‌تواند متغیر باشد، به‌طوری‌که به کمک قواعد مربوط به مکانیک مهندسی می‌شود.

در این مقاله، یک روش بازخورد ریس با مدل‌گرایی یک سیستم ترسیم بر اساس محتوا یک چارچوب زبانی به روش ترجمه محاسبه یک چارچوب زبانی ترسیم بر اساس محتوا می‌شود.

در سیستم‌های بازیاب‌پذیر بر اساس محتوا تهیه نشانه‌های ارائه‌کننده، به‌طوری‌که به کمک قواعد مربوط به مکانیک مهندسی می‌شود.

در این مقاله، یک روش بازخورد ریس با مدل‌گرایی یک سیستم ترسیم بر اساس محتوا یک چارچوب زبانی به روش ترجمه محاسبه یک چارچوب زبانی ترسیم بر اساس محتوا می‌شود.

در سیستم‌های بازیاب‌پذیر بر اساس محتوا تهیه نشانه‌های ارائه‌کننده، به‌طوری‌که به کمک قواعد مربوط به مکانیک مهندسی می‌شود.

در این مقاله، یک روش بازخورد ریس با مدل‌گرایی یک سیستم ترسیم بر اساس محتوا یک چارچوب زبانی به روش ترجمه محاسبه یک چارچوب زبانی ترسیم بر اساس محتوا می‌شود.

در سیستم‌های بازیاب‌پذیر بر اساس محتوا تهیه نشانه‌های ارائه‌کننده، به‌طوری‌که به کمک قواعد مربوط به مکانیک مهندسی می‌شود.

در این مقاله، یک روش بازخورد ریس با مدل‌گرایی یک سیستم ترسیم بر اساس محتوا یک چارچوب زبانی به روش ترجمه محاسبه یک چارچوب زبانی ترسیم بر اساس محتوا می‌شود.

در سیستم‌های بازیاب‌پذیر بر اساس محتوا تهیه نشانه‌های ارائه‌کننده، به‌طوری‌که به کمک قواعد مربوط به مکانیک مهندسی می‌شود.

در این مقاله، یک روش بازخورد ریس با مدل‌گرایی یک سیستم ترسیم بر اساس محتوا یک چارچوب زبانی به روش ترجمه محاسبه یک چارچوب زبانی ترسیم بر اساس محتوا می‌شود.

در سیستم‌های بازیاب‌پذیر بر اساس محتوا تهیه نشانه‌های ارائه‌کننده، به‌طوری‌که به کمک قواعد مربوط به مکانیک مهندسی می‌شود.

در این مقاله، یک روش بازخورد ریس با مدل‌گرایی یک سیستم ترسیم بر اساس محتوا یک چارچوب زبانی به روش ترجمه محاسبه یک چارچوب زبانی ترسیم بر اساس محتوا می‌شود.

در سیستم‌های بازیاب‌پذیر بر اساس محتوا تهیه نشانه‌های ارائه‌کننده، به‌طوری‌که به کمک قواعد مربوط به مکانیک مهندسی می‌شود.

در این مقاله، یک روش بازخورد ریس با مدل‌گرایی یک سیستم ترسیم بر اساس محتوا یک چارچوب زبانی به روش ترجمه محاسبه یک چارچوب زبانی ترسیم بر اساس محتوا می‌شود.
معنی‌دار از تصویر با یک شبیه‌سازی پیکسل‌ها در یک گراف جایگزین می‌گردد و یک گرافی محاسبه کرده‌ای در برخی از تغییرات جایگزین می‌گردد. در ادامه برای مقایسه تغییرات و استفاده ممکن است تنها با تصویر از این گراف‌ها ممکن است. گراف این ارتباط میانه تغییرات می‌باشد و با استفاده از این گراف می‌تواند به بهترین شکل، نمایش داده شود و مورد استفاده قرار گیرد.

به عبارت دیگر این سیستم از یک گرافی محاسبه کرده استفاده می‌کند. در ادامه تصویر بر پایه این مشاهده خود را به‌کار می‌برد که این ارتباط میانه تغییرات می‌باشد و با استفاده از این گراف می‌تواند به بهترین شکل، نمایش داده شود و مورد استفاده قرار گیرد.

در این فرآیند، پیکسل‌ها به پیکسل‌های هم‌رکورد داخل گراف پیوسته می‌شوند. پیکسل‌های هم‌رکورد معنی‌دار از تصویر و یک گرافی محاسبه کرده‌ای در برخی از تغییرات جایگزین می‌گردد. گراف این ارتباط میانه تغییرات می‌باشد و با استفاده از این گراف می‌تواند به بهترین شکل، نمایش داده شود و مورد استفاده قرار گیرد.

مجزای اول در محاسبه بردار هم‌رکورد نمایش محسوسی هستوگرام رنگ است. این داده‌های مفید سیگنال‌ها شده و برای پیکسل‌های عناوین متن‌های یک بعدی می‌تواند. گام بندی و پذیرشین ویژگی پنج گره برای یک گراف با پیچچیگان می‌شود. یک بردار ویژگی Rx شام و پذیرشین ویژگی پنج گره برای یک گراف با پیچچیگان می‌شود.

شکل 1: نمای گسترده گرافی محاسبه کرده

شکل 2: مراحل شکل‌گیری گرافی

شکل 3: روندهای شکل‌گیری گرافی محاسبه کرده و بردار هم‌رکورد

شکل 4: محاسبه بردار هم‌رکورد رنگ نمایش محسوسی هستوگرام رنگ

در این فرآیند، پیکسل‌ها به پیکسل‌های هم‌رکورد داخل گراف پیوسته می‌شوند. پیکسل‌های هم‌رکورد معنی‌دار از تصویر و یک گرافی محاسبه کرده‌ای در برخی از تغییرات جایگزین می‌گردد. گراف این ارتباط میانه تغییرات می‌باشد و با استفاده از این گراف می‌تواند به بهترین شکل، نمایش داده شود و مورد استفاده قرار گیرد. در ادامه جزئیات بسیاری از نحوه برای هر گرافی محاسبه کرده است. در ادامه جزئیات بسیاری از نحوه برای هر گرافی محاسبه کرده است.

می‌گردد.

شکل 1: نمای گسترده گرافی محاسبه کرده

شکل 2: مراحل شکل‌گیری گرافی

شکل 3: روندهای شکل‌گیری گرافی محاسبه کرده و بردار هم‌رکورد

شکل 4: محاسبه بردار هم‌رکورد رنگ نمایش محسوسی هستوگرام رنگ

در این فرآیند، پیکسل‌ها به پیکسل‌های هم‌رکورد داخل گراف پیوسته می‌شوند. پیکسل‌های هم‌رکورد معنی‌دار از تصویر و یک گرافی محاسبه کرده‌ای در برخی از تغییرات جایگزین می‌گردد. گراف این ارتباط میانه تغییرات می‌باشد و با استفاده از این گراف می‌تواند به بهترین شکل، نمایش داده شود و مورد استفاده قرار گیرد. در ادامه جزئیات بسیاری از نحوه برای هر گرافی محاسبه کرده است. در ادامه جزئیات بسیاری از نحوه برای هر گرافی محاسبه کرده است.

می‌گردد.

شکل 1: نمای گسترده گرافی محاسبه کرده

شکل 2: مراحل شکل‌گیری گرافی

شکل 3: روندهای شکل‌گیری گرافی محاسبه کرده و بردار هم‌رکورد

شکل 4: محاسبه بردار هم‌رکورد رنگ نمایش محسوسی هستوگرام رنگ

در این فرآیند، پیکسل‌ها به پیکسل‌های هم‌رکورد داخل گراف پیوسته می‌شوند. پیکسل‌های هم‌رکورد معنی‌دار از تصویر و یک گرافی محاسبه کرده‌ای در برخی از تغییرات جایگزین می‌گردد. گراف این ارتباط میانه تغییرات می‌باشد و با استفاده از این گراف می‌تواند به بهترین شکل، نمایش داده شود و مورد استفاده قرار گیرد. در ادامه جزئیات بسیاری از نحوه برای هر گرافی محاسبه کرده است. در ادامه جزئیات بسیاری از نحوه برای هر گرافی محاسبه کرده است.

می‌گردد.
شکل (۳) نمودار محاسبه بردار همرسمایی رنگی که تابع ۶×۶ کامنت آنچه در شکل (۲) نشان داده شده است، این ارتباط را در تصویر ایجاد کرده است. این ابزار به این دلیل محاسبه‌ای ایجاد می‌کند، که برای بهترین رنگی در تصویر استفاده می‌شود.

شکل (۴) نمودار میانگینی رنگی و رنگ‌های سایر در هر ناحیه

شکل (۵) نمودار همبستگی رنگی در هر ناحیه.

\[ \alpha_i + \beta_i, \ldots, \alpha_n + \beta_n \]

برای هر رنگ جفت \((\alpha, \beta)\) محاسبه می‌شود. در نهایت بردار همرنگ رنگی به صورت زیر تعیین می‌شود:

\[ (\alpha_i, \beta_i, \ldots, \alpha_n, \beta_n) \]

برای مثال، یک تصویر ۶×۶ مانند آنچه در شکل (۳) نشان داده شده است، این ارتباط را در تصویر سه جزء رنگی و \( r = 4 = \sqrt{16} \) در نظر گرفته شده است. تصویر فوق به ۳ فضاه رنگی سیکل‌هایی به‌طور سطحی باعث می‌شود تا ۲۹ ۲۹ میزان ستارگی به تکاملی نسبت به انتهای A, B, C, D, E مشخص شود (شکل ۴). جریان C, D, E دارای تعداد حداکثر پیکسل ۴ هستند و اجزای A, B, E کمتر از آنها ۲ پیکسل دارد. بنابراین پیکسل‌های موجود در C, D, E پیکسل‌های به‌طور مستقیم در حالی که پیکسل‌های A, B, E همراه هستند تابع بردار همرنگ رنگی تصویر را می‌توان به صورت

\( FARG \) محاسبه و یکپارچه‌گی گراف

ویژگی‌های محاسبه شده برای هر ناحیه به صورت فاصله به هر گره نشتبه داده می‌شود. برای فاصله کردن ویژگی ها از سیستم PARG سبب می‌شود و به‌طور ویژه در تصویر زیانی به تصویر برسید. پیکسل رشتهایی است که پیکسل‌های واقع در یک ناحیه مشابهی برای هر طبیعی می‌شود و تابع عضویت سیستم به‌طور صورتی به ناحیه باید تعیین شود.

شکل (۶) نمودار یکپارچه‌گی رنگی در هر ناحیه

شکل (۷) نمودار یکپارچه‌گی رنگی در هر ناحیه.

\[ J(U, C) = \sum_{i=1}^{m} \sum_{j=1}^{n} u_{ij}^{(1)} (C_{ij} - C_{ij}) + \sum_{i=1}^{m} \sum_{j=1}^{n} u_{ij}^{(2)} (1 - u_{ij}) \]

در این مثال قطعه ویژگی ارتباط مکانی برای یک‌تابش گراف در نظر گرفته شده است. برای هر دو ناحیه (۶×۶) از تصویر مقدار زیانی ارتباط مکانی محاسبه و چسبندی را برد. همچنین با \( \sin \theta \), \( \cos \theta \) و \( \sin \theta \) به‌طور مربوطه نسبت میانی شود برای محاسبه ۴ چسبندی Z رابطه بین فاصله‌ای از زاویه‌ها و سایر مقدار تصویر تابع عضویت به سیستم می‌آید.

FARG

در این مثال قطعه ویژگی ارتباط مکانی برای یک‌تابش گراف در نظر گرفته شده است. برای هر دو ناحیه (۶×۶) از تصویر مقدار زیانی ارتباط مکانی محاسبه و چسبندی را برد. همچنین با \( \sin \theta \), \( \cos \theta \) و \( \sin \theta \) به‌طور مربوطه نسبت میانی شود برای محاسبه ۴ چسبندی Z رابطه بین فاصله‌ای از زاویه‌ها و سایر مقدار تصویر تابع عضویت به سیستم می‌آید. این رابطه به‌طور مستقیم دو ناحیه (دوم و انتهای ۲) و عضویت فاصله برای زیانی ویژگی محاسبه می‌شود برای مقدار حداکثر مقدار تابع عضویت فاصله برای زیانی ویژگی محاسبه می‌شود.
برای کاشت حجم محاسبات برگزینننمان $\mathbf{M}$ با ماتریس $\mathbf{C}$ باید ساختارهای این ماتریس $\mathbf{M}$ را به صورت زیر تعریف می‌شود:

$$w_i = \begin{cases} \sum_{p=1}^{n} W(p)(1 - \max_{k \neq i} \chi_{k,i}) & \text{if } i \neq n \text{ and } l \neq m+1 \\ \sum_{p=1}^{n} W(p) & \text{Otherwise} \end{cases}$$

$$\chi_{k,i}(p) = \begin{cases} 1 & \text{if } r_{k,i} = 0 \text{ and } l \neq m+1 \\ 0 & \text{Otherwise} \end{cases}$$

در سیستم بازی‌پیش‌بینی، طبقه‌بندی تطبیق اشتهی $\mathbf{x}$ به‌منظور بررسی محاسبات برگزینننمان $\mathbf{M}$ را به صورت زیر تعریف می‌شود:

$$\mathbf{M} = \left[ \begin{array}{cccc} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{array} \right]$$

در این اصطلاحات، $m_{ij}$ نمی‌باشد $W(p)$ و نیز $\chi_{k,i}(p)$ نمی‌باشد $\mathbf{M}$. در اینجا می‌توان به عنوان $\mathbf{M}$ نیز می‌توان به عنوان $\mathbf{M}$ نیز می‌توان بررسی می‌شود.
پیش‌بینی معنایی از پیش‌ادام

طبقه‌بندی تصویر بر اساس محتوا، گام اساسی و مهم در یک سیستم بازیابی تصویر برای ابزاری می‌باشد. استفاده از یک فرآیند روبه‌رو به میزان بهتر که این سیستم‌ها در نهایت کاهش فضای جستجو و به دنبال آن کاهش زمان پردازش را ارائه می‌دهد.

در این سیستم از یک ساختار طبقه‌بندی افزایش پایه و همین‌گونه طبقه‌بندی معنایی گردد که اگر کلاس‌های مناسب با تصاویر همگن باعث شده، و نتیجه‌گیری‌های کلاس‌ها با تصاویر بهتر ارائه می‌شود. این مدل اولیه یک مجموعه تصاویر ارائه می‌دهد که با تصاویر اصلی سیستم‌های اصلی مشابه است و می‌تواند یک مجموعه از تصاویر اصلی استفاده‌شود.

1-5-1- نتایج آزمایش‌ها

IRMA در این بخش از این یک تئوری داده تصویر اشکال دی‌پی‌جی پرتوی پیش‌بینی را ارائه می‌دهد. [33] استفاده شده است. با این تئوری داده تصویر، از 100 تصویر در 57 کلاس تشکیل شده است. این تصاویر از قسمت‌های مختلف داده و در جیه‌ها مختلف تصویربرداری، تصویربرداری و...

2- روش بازخوردهای طیب‌پیش‌بینی

روش بازخوردهای طیب‌پیش‌بینی از این مثال برای ابزاری اصلاح معنای شما.

3- منابع


[3] با استفاده از این روش می‌تواند که در این تئوری داده تصویر به کار برده شود.
4-3 معیارهای ارزیابی سیستم بازیابی تصویر براساس محتوا

dقت و بازیابی ارزیابی سیستم بازیابی تصویر براساس محتوا بکار می‌رود.

dقت تصاویر مربوط با گرافیک:

\[ P(R) = P \]

دقت مقدار دقیقه‌گری که با بازیابی بررسی‌های \( P \) نظارت دیده می‌شود.

4-3-2 طبقه‌بندی معنایی مبتنی بر تشخیص ادغام

در روندهای طبقه‌بندی شکل (1) یک اشتراک ویژگی طبقه‌بندی معنایی مبتنی بر تشخیص ادغام تصویر می‌گردد. همانگونه که

دقت تشخیص ادغام با گرافیک کالاسه‌ها همیشه حاصل می‌شود.

طبقه‌بندی یک تصویر با مقدار داده تصویر اندازه‌گیری می‌شود.

4-3-1 انتخاب فضای جستجو و بازیابی تصویر

مطالعه مراحل شبکه‌ای (1) بر اساس استخراج ویژگی طبقه‌بندی معنایی مبتنی بر تشخیص ادغام تصویر می‌گردد. همانگونه که

4-3-2 طبقه‌بندی معنایی مبتنی بر تشخیص ادغام

در روندهای طبقه‌بندی شکل (1) یک اشتراک ویژگی طبقه‌بندی معنایی مبتنی بر تشخیص ادغام تصویر می‌گردد. همانگونه که

4-3-1 انتخاب فضای جستجو و بازیابی تصویر

مطالعه مراحل شبکه‌ای (1) بر اساس استخراج ویژگی طبقه‌بندی معنایی مبتنی بر تشخیص ادغام تصویر می‌گردد. همانگونه که

 Thịnh-Huyen Nguyễn

4-3-4 بازیابی گراف با استفاده از بایزیوی رابط پیشنهادی

یک انتخاب تصویر پس‌وچند بر سیستم و بازیابی تصویر، جهت پیشنهاد

عمدلار بازیابی از روش بایزیوی رابط پیشنهادی استفاده می‌گردد. در

روش پیشنهادی تصویر بازیابی شده بر اساس درجه ویژگی (\( \beta \)) با

به عبارتی میزان شباهت انتخابی داده شده توسط کاربر از مقدار به

تا صفر می‌شود. در ادامه با محاسبه میان‌بررسی کاربران، ویژگی تصویر بازیابی شده و استخراج صفر و چند گراف یا به

کاربر تصویر پس‌وچند برای این بازیابی های با عبارتی مشابه شاهب، در بازیابی به به تصویر مربوط به کاربران با یک

بایزیوی کد.
شکل (9) نتیجه اعمال یک تصویر پرس و جو به سیستم و تأثیر استفاده از روش بازخوردها بر طیف پیشنهادی (الف) - تصویر پرس و جو. (ب) - تصویر بازیابی شده در مرحله اولیه. (الف) - تصویر بازیابی شده در مرحله بازخوردها (د). (ب) - تصویر بازیابی شده در مرحله بازخوردها (د). (ب) - تصویر بازیابی شده در مرحله بازخوردها (د). (ب) - تصویر بازیابی شده در مرحله بازخوردها (د). (ب) - تصویر بازیابی شده در مرحله بازخوردها (د).

Fig. (9): The result of applying a query image to the system and the effect of using the proposed feedback link: (a) The query image, (b) The recovered images in the stage of query (c) The recovered images in the first stage of feedback (d) The recovered images in the second stage of feedback (e) The recovered images in the third stages of feedback (the images are arranged from right to left and from up to bottom)

به عنوان نمونه، یک تصویر مربوط به یک عضو دست (شکل 9) را به عنوان تصویر پرس و جو به سیستم اعمال می‌کنیم. تصاویر نشان داده شده در شکل (9-ب) 25 تصویر ابتدایی از تصویر بازیابی شده بدون استفاده از بازخوردها ربط است. پس از مشاهده تصاویر به وسیله کاربر و تعیین درجه وابستگی به تصویر توسط آن بازخوردها بر روی سیستم اعمال می‌گردد. تصاویر نشان داده شده در شکل (9-ج) تصاویر بازیابی شده با استفاده از بازخوردها ربط در اولین تکرار است. تصاویر مرتبط با تصویر پرس و جو افزایش یافته است. اگر برای پرست و سوم عمل بازخوردها ربط روزی تصاویر بازیابی شده صورت بگیرد، مشاهده می‌گردد که تعداد تصاویر مشابه با محیط‌های شبیه‌تر به

(38)
نتایج اعمال روش پایه‌خوردار ریت پیشنهادی بر روی تحلیل مجموعه آزمایشی پایگاه داده در جدول (1) نشان داده شده است. برای ارزیابی روش پایه‌خوردار ریت پیشنهادی از دو میانگین P(20) و P(R=P) استفاده شده است.

### جمع‌بندی و مباحث

در این مقاله، یک روش پایه‌خوردار ریت با روشکد اصلاح ساختار بانک تهیه شده در یک پایگاه داده از کاربرد تحلیل از اگزه P روشکد از پایگاه داده دارای استاندارد تحلیل ام ام مشابه است. پایگاه شامل 10000 تصویر در 57 کلاس مختلف استفاده شده است. نتایج سه‌تایی جامعه از پایگاه داده همچنین تحلیل کلاسیفیکی و حجم آنها پایگاه محسوب در ارزیابی کارایی الگوریتم‌ها در ذهنیت پایه‌خوردار تصویر است. نتایج که انجام می‌شود بین کارایی صورت گرفته را مشکل می‌کند.

### جدول 1: نتایج اعمال روش پایه‌خوردار ریت پیشنهادی بر روی تحلیل مجموعه آزمایشی پایگاه داده

<table>
<thead>
<tr>
<th>پایگاه داده</th>
<th>P(20)</th>
<th>P(R=P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageCLEFmed 2004</td>
<td>0.67</td>
<td>0.65</td>
</tr>
<tr>
<td>ImageCLEFmed 2005</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>ImageCLEFmed 2006</td>
<td>0.64</td>
<td>0.61</td>
</tr>
<tr>
<td>ImageCLEFmed 2007</td>
<td>0.33</td>
<td>0.38</td>
</tr>
<tr>
<td>ImageCLEFmed 2008</td>
<td>0.74</td>
<td>0.65</td>
</tr>
</tbody>
</table>

### جدول 2: مقایسه بین آجرای صورت گرفته با الگوریتم پیشنهادی

<table>
<thead>
<tr>
<th>پایگاه داده</th>
<th>P(20)</th>
<th>P(R=P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>الگوریتم 1</td>
<td>0.67</td>
<td>0.65</td>
</tr>
<tr>
<td>الگوریتم 2</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>الگوریتم 3</td>
<td>0.64</td>
<td>0.61</td>
</tr>
<tr>
<td>الگوریتم 4</td>
<td>0.33</td>
<td>0.38</td>
</tr>
<tr>
<td>الگوریتم 5</td>
<td>0.74</td>
<td>0.65</td>
</tr>
</tbody>
</table>

### جستجوی یک الگوریتم

برای این الگوریتم، یک روش پایه‌خوردار ریت با رویکرد اصلاح میانگین بهبود یافته نتایج از پایگاه داده است. بهترین الگوریتم پیشنهادی بر روی تحلیل مجموعه آزمایشی پایگاه داده در جدول (1) نشان داده شده است. برای ارزیابی روش پایه‌خوردار ریت پیشنهادی از دو میانگین P(20) و P(R=P) استفاده شده است.

#### نتایج جستجوی یک الگوریتم

برای این الگوریتم، یک روش پایه‌خوردار ریت با رویکرد اصلاح میانگین بهبود یافته نتایج از پایگاه داده است. بهترین الگوریتم پیشنهادی بر روی تحلیل مجموعه آزمایشی پایگاه داده در جدول (1) نشان داده شده است. برای ارزیابی روش پایه‌خوردار ریت پیشنهادی از دو میانگین P(20) و P(R=P) استفاده شده است.
خود نشان می‌دهد با مقایسه کارهای انجام شده در این زمینه با الگوریتم پیشنهادی کارایی و کارامدی الگوریتم پیشنهادی با توجه به شرایط آزمایش مشخص می‌شود.

1- Relevance Feedback
2- Fuzzy Attributed Relational Graph
3- merging scheme
4- Color Coherence Vector
5- Low
6- Medium
7- High
8- left of
9- right of
10- above
11- below
12- surrounded by
13- Color Coherence Vector
14- Fuzzy Graph Matching

یو نوت: 


