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Abstract: The finite point method (FPM) is a numerical, mesh-free technique for solving 

differential equations, particularly in fluid dynamics. While the FPM has been previously 

applied in solid mechanics to analyze plates under in-plane loading, there remains a no-

table scarcity of research exploring the out-of-plane analysis of elastic plates using this 

method. This study thoroughly investigates the elastic FPM analysis of thin plates sub-

jected to transverse loadings, focusing specifically on various boundary conditions (BCs). 

Boundary conditions represent a significant challenge in the out-of-plane analysis of thin 

plates within the FPM framework. To address this challenge, the approach incorporates 

additional nodal points positioned close to each boundary node, supplementing the 

points distributed throughout the plate’s interior and along its edges. The strong form of 

the governing equation is employed for the interior points, while the analysis also in-

cludes the scenario of a plate resting on boundary columns. Both distributed and concen-

trated external loads are examined to provide a comprehensive understanding of the be-

havior under different loading conditions. Furthermore, the optimal placement of the ex-

tra boundary nodes is briefly discussed, alongside a focus on the number of nodes within 

the finite point clouds. An appropriate range for this number is proposed, although the 

determination of the optimal distance for the extra boundary nodes and the ideal number 

of cloud points is earmarked for future research. The contribution of this work is to en-

hance the understanding of the FPM in the context of thin plates, particularly concerning 

the critical influence of boundary conditions. 

Keywords: meshless methods; finite point method; thin plate; boundary conditions;  

out-of-plane analysis 

 

1. Introduction 

Analysis of thin plates is one of the crucial efforts in structural engineering and 

mechanics, particularly due to their widespread application in various fields, including 

aerospace, civil, and mechanical engineering. Traditional methods for analyzing plate 

behavior, such as the finite element method (FEM), have been extensively developed and 

implemented. However, these methods often rely on mesh generation and numerical 

integration, which can introduce complications, particularly in the presence of complex 

geometries and discontinuities such as shear bands or cracks [1,2]. 
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Recent studies have highlighted the versatility of mesh-free methods. There are 

several mesh-free methods in the literature including smoothed particle hydrodynamics 

(SPH) [3,4], the element-free Galerkin (EFG) method [5], and the finite point method 

(FPM) [6–8]. For instance, Liu et al. (2010) [9] illustrated the application of SPH in solving 

problems related to fluid–structure interactions, emphasizing its capability to handle 

complex boundary conditions. Similarly, the EFG method has been modified and 

employed for various solid mechanics problems, demonstrating its effectiveness in 

dealing with plate and shell problems [10,11]. 

The finite point method (FPM), originally developed for applications in fluid 

dynamics [6,7], emerges as a promising alternative, offering a pure mesh-free framework 

that simplifies the process of numerical analysis. A series of modifications was applied to 

the original version of the method increasing its accuracy and eliminating its 

inefficiencies, which occur due to ill-conditioning of main matrices and divergence. Both 

original and modified methods are applied successfully for two-dimensional elasticity 

problems [12–18]. Only a few studies have ventured into solid mechanics, particularly the 

bending behavior of plates. Recent advancements have begun to address this gap [13,14], 

but they have not yet addressed utilizing the original version and its main challenges. So, 

it seems that there is a pressing need to expand the method, especially in its original form for 

the analysis of plates under transverse loading. Despite its advantages, the flexural analysis of 

elastic plates using the FPM remains relatively unexplored in the existing literature. 

As mentioned before, despite the growing interest in mesh-free methods, the flexural 

analysis of elastic plates using the FPM remains a relatively under-researched area. 

This article aims to fill this gap by presenting a comprehensive study of the finite 

point method for thin plate analysis. The plate is materially elastic and linear and 

investigated under different boundary conditions. The strong form of the governing 

equation, which is a fourth-order differential equation [19,20], is to be satisfied in every 

internal point, and boundary conditions govern the boundary nodes. Since, according to 

the governing equilibrium equation, there is only one degree of freedom for nodes, 

satisfying two components of boundary conditions at border points is the main challenge. 

There are some techniques to apply more than one boundary condition for nodes located 

on the boundaries. Lagrange multipliers [21] and the penalty method [22] are the two 

well-known methods. Similar to the finite difference method, to overcome this problem, 

we use an extra point in the vicinity of each boundary point. So, the first component of 

the boundary condition is satisfied using the main boundary node and the other is 

satisfied using its corresponding extra node [23]. 

Furthermore, this study investigates the behavior of plates supported on boundary 

columns, incorporating both distributed and concentrated external loads. The exploration 

of these configurations aims to enhance the understanding of how boundary conditions 

affect the stability and accuracy of the FPM analysis. A crucial aspect of our investigation 

involves determining the optimal distance at which to place the extra boundary nodes 

and the ideal number of nodes in the finite point clouds, which is essential for achieving 

reliable results. While preliminary insights are provided, the optimal configurations will 

be addressed in future research, paving the way for more extensive studies in the field. 

Through this work, we hope to contribute to the advancement of mesh-free 

methodologies in solid mechanics, providing a foundation for future explorations and 

applications of the finite point method in the analysis of thin plates and discontinuous 

problems such as crack and shear bands. It is interesting to note that, in the finite point 

method, the model is created through spreading a set of points as dealing with 

discontinuity is easier compared to mesh-based methods. So, it seems that the method 

could be adaptable to problems such as strain softening and crack propagation, which 

have strong discontinuity. Moreover, expanding the method for vibration of thin plates 
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with respect to dynamic loads is another intresting field for future studies. In this case, 

reseaechers will be faced with implementing dynamic equilibrium equations for each 

point and extracting the stiffness and mass matrices of the plate. 

2. Thin Plate Theory 

In computing stress distribution in a thin plate, the xy plane is placed at its mid-plane. 

There is a set of logical rules, according to Kirchhoff’s hypothesis, as follows: 

1. Mid-plane deflection is very small compared to the plate thickness, so the slope of 

the deflection function is small. 

2. The mid-plane after bending is a strain-free surface. 

3. The planar surface normal to the mid-plane remains planar and normal to the mid-

plane after bending deflection. 

4. The stress component normal to the mid-plane is very small compared with other 

stress components and so can be neglected. 

These simplifying rules are similar to simple bending assumptions in beams. 

Now consider a small element of this plate under lateral loads. Let the magnitude of 

element external forces be 𝑝 and the dimensions of elements be 𝑑𝑥 and 𝑑𝑦 along 𝑥 and 

𝑦  axes, respectively. The displacement field of the plate normal to the mid-plane is 

denoted by 𝑤 , which is a function with respect to 𝑥 and 𝑦 coordinates. Due to pure 

bending, plate elements rotate around the coordinate axes as 

𝜃𝑥  =  
𝜕𝑤

𝜕𝑦
 

𝜃𝑦  =  
𝜕𝑤

𝜕𝑥
 

(1) 

The curvatures of a deformed surface are defined by differentiation of the slopes with 

respect to the coordinate axes, which can be written as 

𝜅𝑥  =  
𝜕𝜃𝑦

𝜕𝑥
 =  

𝜕2𝑤

𝜕𝑥2
 

𝜅𝑦  =  
𝜕𝜃𝑥

𝜕𝑦
 =  

𝜕2𝑤

𝜕𝑦2
 

𝜅𝑥𝑦  =  
1

2
(

𝜕𝜃𝑥

𝜕𝑥
+

𝜕𝜃𝑦

𝜕𝑦
)  =  

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

(2) 

As it is described comprehensively in [19,20] and not presented here, bending 

moment components can be written as follows: 

𝑀𝑥  =  −𝐷(𝜅𝑥 + 𝜈𝜅𝑦)  =  −𝐷 (
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
) 

𝑀𝑦  =  −𝐷(𝜅𝑦 + 𝜈𝜅𝑥)  =  −𝐷 (
𝜕2𝑤

𝜕𝑦2
+ 𝜈

𝜕2𝑤

𝜕𝑥2
) 

𝑀𝑥𝑦  =  −𝐷(1 − 𝜈)𝜅𝑥𝑦  =  −𝐷(1 − 𝜈)
𝜕2𝑤

𝜕𝑥𝜕𝑦
 

(3) 

in which 𝐷 is a constant defined as the bending stiffness of the plate, 

𝐷 =  
𝐸𝑡3

12(1 − 𝜈2)
 (4) 

Enforcing the shear equilibrium equation along with moment curvature 

relationships, the governing equation of thin plates can be written as [19] 

∇4𝑤 =  
𝑝

𝐷
 (5) 

The operator ∇4 is defined as 
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∇4 =  
𝜕4

𝜕𝑥4
+ 2

𝜕4

𝜕𝑥2𝜕𝑦2
+

𝜕4

𝜕𝑦4
 (6) 

The key to finding a thin plate response is to solve Equation (5). However, 

considering Equation (3), we can have the following equation: 

𝑀 =  
𝑀𝑥 + 𝑀𝑦

1 + 𝜈
 =  −𝐷∇2𝑤 (7) 

So, concerning Equation (5), another solution to thin plate problems is possible by 

solving the following twin equations: 

∇2𝑀 =  −𝑝 

∇2𝑤 =  −
𝑀

𝐷
 

(8) 

in which 

∇2 =  
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 (9) 

3. Finite Point Method 

Due to its resilience, the finite element method (FEM) has been widely adopted as a 

numerical approach for solving mechanical problems. However, despite this significant 

advantage, discretizing a model into finite elements can be burdensome. Moreover, the 

numerical integrations, require to calculate the stiffness matrix and nodal forces, are often 

time-consuming. To address these drawbacks, a family of methods known as meshless 

methods has emerged over the past few decades. The primary objective of these methods 

is to eliminate the need for meshing in mechanical models; however, some variants still 

require a background mesh for numerical integration. It is important to note that even in 

cases involving a background mesh, the dependence on meshing is weaker, and as a result 

creating the meshing process is easier compared to the finite element method. 

Based on the above discussion, meshless methods can be classified into two 

categories: the first class includes methods with a background mesh. These methods 

utilize numerical integrations and discretize the governing equations based on weak-form 

formulations. This approach typically results in fewer ill-conditioned system equations, 

allowing for more accurate results. Although these methods incorporate a mesh, the 

meshing rules are less stringent than those in the FEM. Notable examples include 

smoothed particle hydrodynamics and the element-free Galerkin method. The second 

category of meshless methods contains pure meshless methods. These methods do not 

use mesh at all, satisfying the strong form of the governing equations over a set of points, 

thereby eliminating the need for numerical integration. The complete removal of meshing 

simplifies the creation of mechanical models, and without numerical integration, 

computational speeds are significantly faster compared to both the first category and the 

FEM. However, these methods face a higher likelihood of encountering singular matrices, 

which can compromise the accuracy of the results. The finite point method is a prominent 

example of this category. 

This paper presents a solution for thin plates using the finite point method. The 

analytical model of the plate is developed by distributing a set of points across the mid-

plane. To enforce the governing equations over the points, it is necessary to approximate 

the primary functions of displacement (w) or moments (M) in the vicinity of each point. 

For each point, a relatively small region containing a sufficient number of neighboring 

nodes is established, known as a “cloud”. The point for which the cloud is created is 

referred to as the “master node”. The finite point method approximates objective 
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functions, applying the weighted least-square method described in [8]. In this approach 

the objective function 𝑢 approximated by function 𝑢̂ is 

𝑢̂  =  𝒑𝑇𝒂 (10) 

in which 𝒑 is the vector of monomials selected completely or at least symmetrically from 

the Pascal triangle. 

To make the approximated function closely match the function u, we first need to 

identify an error index. This involves calculating the differences between the values of the 

function u and the values of the approximated function 𝑢̂ at the cloud points, which we 

refer to as residuals. The sum of squared residuals across these cloud points serves as the 

error index. To establish a logical contrast between nodes, we multiply the squared 

residuals at each point by a weight. The weight is set to 1 at the master node position and 

decreases monotonically with the distance from the master node. Therefore, the error 

index can be expressed by the following equation: 

𝐽 =  ∑ 𝑤(𝑥𝑖)(𝑢̂𝑖 − 𝑢𝑖)2

𝑛

𝑖 = 1

 (11) 

in which 𝐽 is the error index, 𝑢𝑖 is the value of the function 𝑢 at node 𝑖, and 𝑤(𝑥𝑖) is 

the weight at that point. Utilizing (10), the error index can be written as 

𝐽 =  ∑ 𝑤(𝑥𝑖)(𝒑𝑖
𝑇𝒂 − 𝑢𝑖)

2
𝑛

𝑖 = 1

 (12) 

Minimizing the error index, its derivative with respect to the vector 𝒂 components 

must be equal to zero, 

𝜕𝐽

𝜕𝒂
 =  0 (13) 

resulting in the following equation for the vector 𝒂: 

𝒂 =  𝑨−1𝑩𝒖̅ (14) 

where 𝒖̅ is the vector of the nodal value of the function 𝑢 and matrices 𝑨 and 𝑩 are 

defined as follows: 

 𝑨 =  ∑ 𝑤(𝑥𝑖)𝒑𝒊𝒑𝑖
𝑇

𝑛

𝑖=1

 (15) 

𝑩 =  [𝑤(𝑥1)𝒑𝟏 𝑤(𝑥2)𝒑𝟐 ⋯ 𝑤(𝑥𝑛)𝒑𝒏] (16) 

Finally, substituting vector 𝒂 from (14) to (10), the best approximation function is 

obtained as 

𝑢̂  =  𝒑𝑇𝑨−1𝑩𝒖̅ (17) 

Now there are two different ways to solve thin plate problems. The first is to satisfy 

twin Equation (8). These equations are generally compatible with plates with simple 

boundaries. To solve Equation (8), first, the moment parameter 𝑀 has to be interpolated 

over clouds and used in the first Equation (8). Then, displacement field 𝑊 is interpolated 

and put into the second Equation (8). Finally, the nodal values of the displacement field 

are obtained. As described above, in this method two separated differential equations with 

two unknown parameters are satisfied at each node. So, the model behavior is similar to a 

model with two degrees of freedom for nodes. It is clear that in this case both Dirichlet and 

Neumann boundary conditions can be enforced similarly to the finite element process. 

The second way to solve thin plate problems is to consider Equation (5) as the 

governing equation. This equation is the general form of the equilibrium equation and 
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without any limitation can be applied to thin plates with arbitrary boundary conditions. 

The displacement function, 𝑊, is interpolated and substituted into Equation (5). As there 

is only one degree of freedom for nodes, enforcement of boundary conditions is the main 

challenge. There are different ways to overcome this challenge such as Lagrange 

multipliers, penalty functions, and using extra nodes. In this paper, the third method is 

adopted. In this method, an extra node is placed outside the model close to each boundary 

node. This extra node, along with the main boundary node, acts like a unique boundary 

node with two degrees of freedom and each one satisfies one of the boundary conditions. 

This method is exactly similar to what happened in the finite difference method. 

4. Numerical Examples 

First of all, we give a brief description of applying boundary conditions in numerical 

examples. As mentioned above, a set of additional nodes are placed close to the main 

boundary nodes, increasing the nodal degrees of freedom in boundaries. So, the main 

boundary node and its corresponding additional node in total are a two-degree-of-

freedom node. The distribution of these additional nodes is shown in Figure 1. Generally, 

there are two boundary conditions at each boundary node, and now we can satisfy one of 

them using the main boundary node and the second one at its corresponding additional 

node. A collection of examples is presented, concentrating on different aspects of plate 

problems and numerical solutions. Figure 1 represents the general model of a plate in the 

FPM algorithm, created by spreading a set of points. 

 

Figure 1. Location of auxiliary points. 

In Figure 1, 𝑑𝑥 and 𝑑𝑦 are the horizontal and vertical distance between the main 

internal nodes of the model, respectively, and 𝑟𝑥 and 𝑟𝑦 are the horizontal and vertical 

distance between each additional node and its corresponding main boundary node, 

respectively. 

In the modelling of some plates considered in numerical examples, some mechanical 

parameters such as modulus of elasticity are considered as unity. Although it is far from 

the reality from the point of view of an engineer, it is suitable for numerical experiments. 

Note that in the present work we aimed to invesigate the FPM and search for its 

drawbacks. The method is applied to linear materials. In this case, the material’s 

properties are considered by selecting its modulus of elasticity and Poisson’s ratio. It is 

clear that if the method performs well for a certain value of modulus of elasticity and 

Poisson’s ratio, it would perform well for any other values of those parameters as well. 
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So, in investigating the performance of the method, we selected our case studies and their 

mechanical parameters regardless of their corresponding values in the real world. 

Example 1. A simply supported square plate with dimension a = 1 m along both 𝑥 and 𝑦 axes is 

considered (Figure 2). The plate is affected by a laterally distributed sinusoidal load according to 

Equation (18). 

𝑝(𝑥, 𝑦)  =  𝑞𝑠𝑖𝑛
𝜋𝑥

𝑎
𝑠𝑖𝑛

𝜋𝑦

𝑎
 (18) 

 
Figure 2. Plate under distributed sinusoidal load. 

Parameter 𝑞  is considered to be unity. Simple supports affect boundary nodes, 

enforcing the following equations: 

𝑥 =  0, 𝑥 =  𝑎 → 𝑤 =  0,
𝜕2𝑤

𝜕𝑥2
 =  0 (19) 

𝑦 =  0, 𝑦 =  𝑎 → 𝑤 =  0,
𝜕2𝑤

𝜕𝑦2
 =  0 (20) 

The analytical exact solution of the problem is presented in [20] as 

𝑤(𝑥, 𝑦)  =  
𝑞𝑎4

4𝜋4𝐷
𝑠𝑖𝑛

𝜋𝑥

𝑎
𝑠𝑖𝑛

𝜋𝑦

𝑎
 (21) 

A set of four models is created using different numbers of nodes and solved by 

applying the finite point method. The displacement surfaces of the models are compared 

with their corresponding exact surface in Figure 3. As seen, the finite point responses are 

accurate enough. 
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(a) (b) 

  

(c) (d) 

Figure 3. Displacement of plate with different numbers of total nodes (FPM). (a) 121 points. (b) 441 

points. (c) 2601 points. (d) 10,201 points. 

The maximum deflections of models calculated by the FPM are compared with the 

analytical solutions in Table 1. Although it is evident from Table 1 that an increase in 

points created by the model results in more accuracy, the calculation cost and time might 

increase significantly. 

Table 1. Comparison of plate maximum displacement with maximum exact displacement. 

Total Num-

ber of 

Points 

Modulus of 

Elasticity (E) 

(𝐤𝐍/𝐦𝟐) 

Thickness 

(m) 
Q 

(𝐤𝐍/𝐦𝟐) 

Poisson’s 

Ratio 
ν 

Number of 

Cloud 

Points 

Number of 

Monomials 
Max Exact 

(m) 
Max FPM 

(m) 

121 1 0.001 −1 0.3 30 15 −0.028 −0.0292 

441 1 0.001 −1 0.3 30 15 −0.028 −0.0283 

2601 1 0.001 −1 0.3 30 15 −0.028 −0.0281 

10,201 1 0.001 −1 0.3 30 15 −0.028 −0.028 

For a deeper investigation, an error index is defined by Equation (22) over all model 

points: 

Convergence rate =  log ∑ √
(𝑤𝐹𝑃𝑀 − 𝑤𝐹𝐸𝑀)2

𝑛
 (22) 
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The logarithmic graph of the error index versus the total number of points is shown 

in Figure 4 as the convergence rate. It is clear from the graph that increasing the total 

number of nodes causes a significant decrease in the error index. 

 

Figure 4. Convergence rate. 

Example 2. A square plate with simple boundaries is considered against a uniformly distributed lateral 

load. The area of the load zone is gradually decreased through three different phases and finally converted 

to a concentrated force. The main problem and the three phases are represented in Figure 5. 

  
(a) (b) 

  
(c) (d) 

Figure 5. (a) Main problem plate with uniformly distributed load  𝑞0 over whole area; (b) plate un-

der uniform load on a quarter of its area at its center; (c) plate under uniform load at 4 percent of its 

area at its center; (d) plate under concentrated load. 
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The exact solutions to these problems are available in [20] as follows: 

Case (a): 

𝑤(𝑥, 𝑦)  =  ∑ ∑ 𝑐𝑚𝑛𝑠𝑖𝑛
𝑚𝜋𝑥

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑦

𝑎

∞

𝑛 = 1,3,⋯

∞

𝑚 = 1,3,⋯

 (23) 

in which 

𝑐𝑚𝑛  =  

16𝑞
𝑚𝑛𝜋2

𝐷𝜋4(
𝑚2

𝑎2 +
𝑛2

𝑎2)
 (24) 

Cases (b,c): 

𝑤(𝑥, 𝑦)  =  
16𝑞

𝜋6𝐷
∑ ∑ 𝑐𝑚𝑛𝑠𝑖𝑛

𝑚𝜋𝑥

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑦

𝑎

∞

𝑛 = 1

∞

𝑚 = 1

 (25) 

where 

𝑐𝑚𝑛  =  
𝑠𝑖𝑛(

𝑚𝜋𝜉
𝑎 )𝑠𝑖𝑛(

𝑛𝜋ղ
𝑎 )𝑠𝑖𝑛(

𝑚𝜋𝑐
2𝑎 )𝑠𝑖𝑛(

𝑛𝜋𝑑
2𝑎 )

𝑚𝑛 [(
𝑚2

𝑎2 +
𝑛2

𝑎2)]
2  (26) 

Case (d): 

𝑤(𝑥, 𝑦)  =  
4𝑞

𝜋4𝑎2𝐷
∑ ∑ 𝑐𝑚𝑛𝑠𝑖𝑛

𝑚𝜋𝑥

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑦

𝑎

∞

𝑛 = 1

∞

𝑚 = 1

 (27) 

where 

𝑐𝑚𝑛  =  
𝑠𝑖𝑛(

𝑚𝜋𝜉
𝑎 )𝑠𝑖𝑛(

𝑛𝜋ղ
𝑎 )

[(
𝑚2

𝑎2 +
𝑛2

𝑎2)]
2  (28) 

The parameters of Equations (24), (26), and (28) are specified in Figure 5. The lateral 

load in cases b, c, and d are placed in the center of the plate (ղ, 𝜉 =  0.5). 

The maximum displacements of the plate in all cases using the FPM are compared 

with the exact value from analytical solution in Table 2. As is seen from the table, the 

results from the FPM are close to their exact values. 

Table 2. Maximum displacement of plate (exact, FPM, and FEM). 

Case 

Modulus 

of 

Elasticity 

(𝐄) 

(𝐤𝐍/𝐦𝟐) 

Q 

(𝐤𝐍/𝐦𝟐) 

Poisson’s 

Ratio 
𝝂 

Number of 

Points 

(FPM) 

Number of 

Nodes for 

FEM 

Number of 

Elements 
Max Exact  

𝒘 (𝐦) 
Max FEM  

𝒘 (m) 
Max FPM  

𝒘 (m) 

a 1 × 106 −1 0.3 2601 2601 2500 −0.04436 −0.04467 −0.04439 

b 1 × 106 −1 0.3 2601 2601 2500 −0.02328 −0.02342 −0.02331 

c 1 × 106 −1 0.3 2601 2601 2500 −0.00474 −0.00477 −0.00473 

d 1 × 106 −1 (kN) 0.3 2601 2601 2500 −0.12667 −0.12759 −0.12804 

It is necessary to note that the number of nodes in the finite point model and the finite 

element model are the same. A close inspection of Figure 6 reveals that when the external 

load is concentrated, the lateral displacement is concentrated too. In other words, by 

moving from case a to case d, the blue zone in the displacement graph becomes smaller 

and smaller. 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Figure 6. Plate response in different phases. (a) FPM result in case a. (b) Exact result in case a. (c) 

FEM result in case a. (d) FPM result in case b. (e) Exact result in case b. (f) FEM result in case b. (g) 

FPM result in case b. (h) Exact result in case b. (i) FEM result in case b. (j) FPM result in case b. (k) 

Exact result in case b. (l) FEM result in case b. 

The error index introduced by Equation (22) is applied to these four problems in the 

finite point and the finite element solutions and the results are plotted in Figure 7. It is 

clear from the graph that in some cases far from concentrated loads, the finite point 

method leads to more exact solutions; however, in the cases close to concentrated loads, 

the finite element method surpassed the finite point solution. 
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Figure 7. Comparison of the error index of FEM and FPM methods to the exact solution. 

Example 3. In this section, again the square plate of the previous problem is considered, but a 

variety of different boundary conditions are applied to its borders. The solution is focused on the 

number of cloud points and aims to see its effect on the accuracy of the calculated response. The 

plate is under a uniform distributed load and is investigated in three different cases as below. 

In case a, three border lines are restrained by simple supports, and the fourth one is 

fixed. In case b, two parallel borders are hinged and the others are fixed, and finally, in 

case c, all borders are fixed. These three cases are shown in Figure 8. 

  

(a) (b) 

 
(c) 

Figure 8. Plate under uniform distributed load: (a)  plate with fixed support along one edge and 

simple supports along the other edges; (b) plate with fixed supports along two parallel edges and 

simple supports along the other edges; (c) plate with fixed supports along three edges and a simple 

support along the other edge. 
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The exact solution of these three problems is reported in [20] as follws: 

𝑐𝑎𝑠𝑒 𝑎 ⇒ 𝑤𝑒𝑥𝑎𝑐𝑡(𝑥 = 0.5,𝑦 = 0.5) 
 =  0.00280

𝑞𝑎4

𝐷
 (29) 

𝑐𝑎𝑠𝑒 𝑏 ⇒ 𝑤𝑒𝑥𝑎𝑐𝑡(𝑥 = 0.5,𝑦 = 0.5) 
 =  0.00192

𝑞𝑎4

𝐷
 (30) 

𝑐𝑎𝑠𝑒 𝑐 ⇒ 𝑤𝑒𝑥𝑎𝑐𝑡(𝑥 = 0.5,𝑦 = 0.5) 
 =  0.00126

𝑞𝑎4

𝐷
 (31) 

The contrast between the simple and fixed supports is obvious in Figure 9. 

  
(a) (b) 

Figure 9. Displacement of case a in x–z plane: (a) FPM, (b) FEM. 

Table 3 shows the maximum displacement for problem cases a, b, and c calculated 

by analytical exact relations, the finite element method, and the finite point method. The 

plate is modelled in both the finite element and finite point methods spreading 2601 

points. The finite point procedure runs five times with different numbers of points in 

clouds equal to 15, 30, 40, 60, and 90, respectively. As a mathematical obligation, the num-

ber of cloud points must be greater than the number of monomials, so the minimum num-

ber of cloud points is considered equal to the number of monomials. It is clear from Table 

3 that increasing the number of cloud points up to 60 results in an increase in accuracy, but 

further increase in the number of cloud points leads to instability and so reduces the accuracy. 

The displacement of plate case c calculated by the finite point method with 90 and 30 

cloud points is shown in Figure 10. The instability of calculations is obvious in the case of 

90 points in the clouds. There is a need, in future studies, to determine the optimum num-

ber of cloud points. 

  

(a) (b) 

Figure 10. Displacement of case c with FPM: (a) 30 points in cloud, (b) 90 points in cloud. 
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Table 3. Displacement at plate center: exact, FEM, and FPM with various numbers of cloud points. 

Case 

Modulus 

of 

Elasticity 

(E) 

(𝐤𝐍/𝐦𝟐) 

𝒒 

(𝐤𝐍/𝐦𝟐) 

Poisson’s 

Ratio 
ν 

Number of 

Points 

(FPM) 

Number of 

Elements 

(FEM) 

Number of 

Points in 

Cloud 

Exact in x = 

0.5, y = 0.5 

w (m) 

FEM in x = 

0.5, y = 0.5 

w (m) 

FPM in x = 

0.5, y = 0.5 

w (m) 

a 1 × 106 −1 0.3 2601 2500 15 −0.030576 −0.030566 −0.033853 

a 1 × 106 −1 0.3 2601 2500 30 −0.030576 −0.030566 −0.034115 

a 1 × 106 −1 0.3 2601 2500 40 −0.030576 −0.030566 −0.030275 

a 1 × 106 −1 0.3 2601 2500 60 −0.030576 −0.030566 −0.030554 

a 1 × 106 −1 0.3 2601 2500 90 −0.030576 −0.030566 −0.031118 

b 1 × 106 −1 0.3 2601 2500 15 −0.021012 −0.020998 −0.017826 

b 1 × 106 −1 0.3 2601 2500 30 −0.021012 −0.020998 −0.023643 

b 1 × 106 −1 0.3 2601 2500 40 −0.021012 −0.020998 −0.021118 

b 1 × 106 −1 0.3 2601 2500 60 −0.021012 −0.020998 −0.020996 

b 1 × 106 −1 0.3 2601 2500 90 −0.021012 −0.020998 −0.022524 

c 1 × 106 −1 0.3 2601 2500 15 −0.013759 −0.013846 −0.019428 

c 1 × 106 −1 0.3 2601 2500 30 −0.013759 −0.013846 −0.014354 

c 1 × 106 −1 0.3 2601 2500 40 −0.013759 −0.013846 −0.013752 

c 1 × 106 −1 0.3 2601 2500 60 −0.013759 −0.013846 −0.013831 

c 1 × 106 −1 0.3 2601 2500 90 −0.013759 −0.013846 −0.014298 

The displacement responses for problems cases a, b, and c along 𝑥 =  0.5 in FEM 

and FPM procedures are compared in Figures 11, 12, and 13, respectively. As mentioned 

above, there are acceptable adjustments between FEM and FPM responses with up to 60 

points in the clouds. As seen in Figure 14, with further increasing the number of points in 

clouds, the error index climbs up gradually. 

 

Figure 11. Displacement of plate case a along x = 0.5. 
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Figure 12. Displacement of plate case b along x = 0.5. 

 

Figure 13. Displacement of plate case c along x = 0.5. 

 

Figure 14. Comparison of error indexes for FPM and FEM in cases a, b, and c. 
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plate is affected by a linear triangular distributed load along the 𝑦 axis, and a constant load along 

the x axis. So, the equation of external load can be written as follows: 

𝑄(𝑥, 𝑦)  =  
𝑞𝑦

𝑎
 (32) 

In this section, the focus is on the position and distance of additional boundary nodes 

from the plate borders. The maximum displacement of the plate with fixed supports (case 

b) is given in [20] as 

𝑤𝑚𝑎𝑥  =  0.00126
𝑞𝑎4

𝐷
 (33) 

As shown in Figure 16, in both finite element and finite point solutions, the blue area 

is more elongated in the direction of the simple supports, which is acceptable behavior. 

In both Figures 16 and 17, the point with maximum displacement has shifted to the 

left, which is due to the entry of the maximum triangular load on the left boundary. 

  

(a) (b) 

Figure 15. Plate with a distributed triangular load. 

  

(a) (b) 

Figure 16. Displacement response of plate case a: (a) FEM, (b) FPM. 
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(a) (b) 

Figure 17. Displacement response of plate case a (x–z axis): (a) FEM, (b) FPM. 

In Table 4, the centroid displacements of the plate in cases a and b are presented from 

the exact solution, the FEM, and the FPM, respectively. It is clear from the table that when 

additional point distances from borders are about the general point distances and higher, 

large errors occur. By decreasing the distance of additional nodes from borders, the nu-

merical errors are reduced. However, in the case of too small a distance, the stiffness ma-

trix moves rapidly toward singularity. 

Table 4. Displacement at plate center in cases a and b for additional nodes at various distance from borders. 

Case 

Modulus 

of 

Elasticity 

(E) 

(𝐤𝐍/𝐦𝟐) 

Q 

(𝐤𝐍/𝐦𝟐) 

Poisson’s 

Ratio 
ν 

Distance of 

Point 

(FPM) 

(m) 

Distance of 

Point 

(FEM) (m) 

Distance of 

Auxiliary 

Points (m) 
(𝒓𝒙  =  𝒓𝒚) 

Exact in x = 

0.5, y = 0.5 

w (m) 

FEM in x = 

0.5, y = 0.5 

w (m) 

FPM in x = 

0.5, y = 0.5 

w (m) 

a 1 × 106 −1 0.3 0.02 0.02 0.2 −0.010855 −0.010873 −3079.511 

a 1 × 106 −1 0.3 0.02 0.02 0.02 −0.010855 −0.010873 −0.012378 

a 1 × 106 −1 0.3 0.02 0.02 0.002 −0.010855 −0.010873 −0.011013 

a 1 × 106 −1 0.3 0.02 0.02 0.0002 −0.010855 −0.010873 −0.010888 

a 1 × 106 −1 0.3 0.02 0.02 0.00002 −0.010855 −0.010873 −0.010867 

b 1 × 106 −1 0.3 0.02 0.02 0.2 −0.006879 −0.007035 −933.8225 

b 1 × 106 −1 0.3 0.02 0.02 0.02 −0.006879 −0.007035 −0.008163 

b 1 × 106 −1 0.3 0.02 0.02 0.002 −0.006879 −0.007035 −0.007134 

b 1 × 106 −1 0.3 0.02 0.02 0.0002 −0.006879 −0.007035 −0.007038 

b 1 × 106 −1 0.3 0.02 0.02 0.00002 −0.006879 −0.007035 −0.007029 

Figure 18 represents the error index of FPM models with different distances for ad-

ditional boundary points by considering the finite element results as the exact solution. 

As a primary obligation, it is noted from the results that the additional node distance from 

the plate border must be about and greater than the distance between general points. 
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Figure 18. Comparison of the error index in FPM compared to FEM. 

Example 5. The square plate with dimension a = 1 m is considered. The border along the 𝑦 axis is 

fixed and the two others are simple. As shown in Figure 19, a distributed load that is sinusoidal 

along the 𝑦 axis and constant along the x axis is applied to the plate. The external load equation 

can be written as follows: 

0 ≤ 𝑥 ≤ 𝑎 → 𝑄 =  𝑞 (34) 

0 ≤ 𝑦 ≤ 𝑎 → 𝑄 =  𝑞𝑠𝑖𝑛
𝜋𝑦

𝑎
 (35) 

 

Figure 19. Plate with simple and fixed supports under lateral load. 

The maximum displacement of the plate is calculated analytically in [20] as follows: 

𝑤𝑚𝑎𝑥  =  𝑤 (
𝑎

2
, 0)  =  0.00154

𝑞𝑎4

𝐷
 (16) 

The displacement response of the plate from the FPM is compared to that from the 

FEM in Figure 20. In Table 5 the maximum displacement of the plate is compared in three 

cases (exact, FEM, and FPM). To evaluate the effect of the weight function, numerical cal-

culations were repeated without applying the weights. As shown in Table 5, the numerical 

error increased in this case. The displacement response of the plate along 𝑥 =  0.5 is also 

plotted for different cases in Figure 21. 

-2.351562381

-3.823734015

-4.85989034

-5.796809047

-6.197537391

-2.31E+00

-3.85E+00

-4.17E+00 -4.18E+00 -4.184345729

-7

-6

-5

-4

-3

-2

-1

0

0.2(m) 0.02(m) 0.002(m) 0.0002(m) 0.00002(m)

er
ro

r 
in

d
ex

Distance of auxiliary points (m)

case a

case b



Buildings 2025, 15, 241 19 of 25 
 

 
 

(a) (b) 

Figure 20. Plate displacement: (a) FPM, (b) FEM. 

Table 5. Comparison of maximum displacement: exact, FEM, and FPM. 

Modulus of 

Elasticity (E) 

(𝐤𝐍/𝐦𝟐) 

q 

(𝐤𝐍/𝐦𝟐) 

Poisson’s 

Ratio 
ν 

Distance 

of Point 

(FPM) 

(m) 

Distance 

of Point 

(FEM) 

(m) 

Weight 

Function 

Exact in x 

= 0.5, y = 

0.5  

w (m) 

FEM in x 

= 0.5, y = 

0.5 

w (m) 

FPM in x 

= 0.5, y = 

0.5 

w (m) 

Convergence 

Rate Between 

FPM & Exact 

(All Points) 

1× 𝟏𝟎𝟔 −1 0.3 0.02 0.02 Off −0.016826 −0.016871 −0.020419 0.0003311 

1× 𝟏𝟎𝟔 −1 0.3 0.02 0.02 On −0.016826 −0.016871 −0.016850 3.605 × 10−6 

 

 

Figure 21. Displacement of the plate along 𝑥 = 0.5. 

Example 6  The square plate of the previous section is considered and one of its fixed supports is 

removed. So, its borders along the 𝑦 axis are supported simply, one along the 𝑥 axis is fixed, and 

the other one along 𝑥 axis is free. The plate is under a uniform distributed load with an intensity 

equal to 𝑞. The plate is shown in Figure 22. 

-0.025

-0.02

-0.015

-0.01

-0.005

0

0

0
.0

6

0
.1

2

0
.1

8

0
.2

4

0
.3

0
.3

6

0
.4

2

0
.4

8

0
.5

4

0
.6

0
.6

6

0
.7

2

0
.7

8

0
.8

4

0
.9

0
.9

6

D
is

p
la

ce
m

en
t 

(m
)

y Weight function

on (FPM)

Weight function

off (FPM)

FEM

Exact

FEM & FPM Displacement



Buildings 2025, 15, 241 20 of 25 
 

 

Figure 22. Plate with three kinds of support conditions under uniform load. 

The maximum displacement of the plate by solving the governing differential equa-

tion exactly is given in [20] as 

𝑤𝑚𝑎𝑥  =  0.0113
𝑞𝑎4

𝐷
 (17) 

The displacement response of the plate calculated by the FPM and the FEM are plot-

ted in Figure 23 and can be compared. The maximum displacement from these two meth-

ods and the exact value are also listed in Table 6. The displacement response of the plate 

along 𝑦 =  0.5 is also plotted in Figure 24. 

 

 

(a) (b) 

Figure 23. Plate displacement response: (a) FPM, (b) FEM. 

Table 6. Maximum displacement (exact, FEM, and FPM). 

Method 
Modulus of 

Elasticity (E) 

(𝐤𝐍/𝐦𝟐) 

𝒒 

(𝐤𝐍/𝐦𝟐) 

Poisson’s 

Ratio 
𝝂 

Number of 

Points or 

Elements 

Max Exact 

(𝐦) 
Max 

(𝐦) 
Percent 

Error 

FPM 1× 106 −1 0.3 441 −0.1234 −0.1236 0.162 

FEM (shell4R) 1× 106 −1 0.3 400 −0.1234 −0.1229 0.405 
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Figure 24. Displacement response of plate with three kinds of support conditions along 𝑦 =  0.5. 

Example 7. The square plate from the previous problems is considered over columns at its corners 

and is affected by a uniform distributed load. The plate is shown in Figure 25. 

 

Figure 25. Plate over corner columns and under uniform distributed load. 

The displacement response of the plate calculated by the finite point and the finite 

element methods is plotted in Figure 26 and its displacement along 𝑦 =  0.5 is shown in 

Figure 27. The finite point response is close to the finite element response. 

 

 

(a) (b) 

Figure 26. Displacement response of the plate: (a) FPM, (b) FEM. 
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Figure 27. Displacement response of plate over corner columns along 𝑦 =  0.5. 

Example 8. The square plate from the previous problems, with one fixed support along the 𝑥 axis 

and three other borders without support are considered and affected by a uniform distributed load. 

The plate is shown in Figure 28. 

 

Figure 28. Plate with a fixed support and three free boundaries under constant distributed load. 

The displacement response of the plate calculated with the finite point and finite element 

procedures is shown in Figure 29 and the displacement along 𝑦 = 0.5 is plotted in Figure 30. 

 
 

(a) (b) 

Figure 29. Displacement response: (a) FEM, (b) FPM. 
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Figure 30. Comparison of the approximate value of the solution by the FEM and the FPM. 

5. Conclusions 

In this article, the finite point method was applied to the out-of-plane analysis of thin 

plates. Note that, although a number of scientific works have applied the finite point 

method for two-dimensional in-plane problems, and there are powerful modified and 

promoted versions of the method in those cases, there is still a pressing need to investigate 

the method for three-dimensional bending problems. This paper aimed to apply the orig-

inal version of the finite point method to thin plate problems as a threshold for future 

developments of the method. Several plates with different mechanical properties, such as 

a variety of support conditions including column boundaries subjected to a wide range of 

external loads from uniformly distributed to linear, harmonic and concentrated, are con-

sidered for a deep inspection of the method, revealing its hidden drawbacks. The meshless 

nature of the finite point method simplifies the creation of numerical models compared to 

mesh-based methods. This approach is particularly useful for problems involving strong 

discontinuities, such as strain softening and crack propagation, as nodes can be arranged 

along the discontinuity paths. This avoids the time-consuming task of mesh refinement. 

Besides these breathtaking aspects, satisfying boundary conditions is the main challenge 

even in elastic linear tasks as there is only one degree of freedom for model points. In this 

paper, drawing inspiration from the finite difference method, we satisfy the boundary 

conditions. Numerical models were constructed by distributing regular mesh points 

across the plates and their borders. The finite point method was then applied, and the 

resulting model responses were compared to analytical solutions when available. In cases 

lacking analytical responses, finite element models were created using the same number 

of points as in the finite point model for comparison. The numerical error index was cal-

culated for each case and yielded satisfactory results across the board. 

Initially, this method was investigated in the context of linear elastic thin plates. A 

series of rectangular plates with various boundary conditions were analyzed, incorporat-

ing different combinations of simple, fixed, and free boundary conditions under various 

external loads. In one case study, a plate was supported by four rigid columns, while in 

another, a distributed external load was gradually concentrated. A deeper investigation 

focused on the distance between boundary nodes and their corresponding extra nodes. 

When these distances were small or comparable to those between internal nodes, the re-

sults remained accurate. However, greater distances led to significant numerical errors. 

The number of nodes within interpolation clouds was also examined, revealing that a 
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commonly used number of cloud nodes produced results close to benchmarks. In contrast, 

using too few or too many cloud nodes resulted in numerical instability. 

This study represents a preliminary application of the finite point method to plate 

problems, which can be seen as a starting point in developing the method for application 

to a great range of mechanical problems. As the method succeeded in solving the linear thin 

plates it is now the time to determine the method parameters such as the number of cloud 

points and also evaluate the method’s robustness for nonlinear problems in future research. 
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