IMPROVE SMALL SIGNAL STABILITY IN SINGLE-MACHINE INFINITE-BUS WITH POWER SYSTEM STABILIZER

MOHAMMADREZA YOUSEFI, GHAZNFAR SHAHGHIOLIAN
SEPEHR MOALEM
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Esfahan, Iran

ABSTRACT
This paper presents a generalized small signal model for analysis and design of power system stabilizer (PSS) in single-machine infinite-bus (SMIB) system. Finally, the simulations results using Matlab verify the effectiveness of the controller proposed method on enhance power system stability by damping oscillations.

KEY WORDS
Power system stabilizer, small signal stability, eigenvalue analysis.

1. INTRODUCTION
Low frequency oscillation (LFO) of power system is one of the most important oscillations which greatly affect the stability of power system. LFOs are a common problem in large power systems, when systems are interconnected by relatively weak tie lines. These oscillations may sustain and grow to cause system separation if no adequate damping is available [1-3]. Damping of a power system oscillation is one of the main concerns in the power system operation since many years [4]. In order to damp power system oscillations and increase system oscillations stability, the installation of power system stabilizer (PSS) is both economical and effective. PSS is added to excitation systems to enhance the damping during low frequency oscillations [5]. The output of the PSS is applied as a supplementary control signal to the machine voltage regulator or terminal [6]. Different control scheme for a PSS were proposed, these techniques may be classified in to three groups: linear control based on linearization of the system about an operating point such as adaptive controller, nonlinear control such as state feedback controller, variable structure controller, extended integral controller and robust controller, and empirical control based on heuristic methods such as fuzzy logic controller, genetic algorithms and synergic control [7, 8].

A PSS design scheme based on robust decentralized output feedback sliding mode control technique on a multi-machine power system with used linearized model of the nonlinear equations proposed in [9] and compare it with classical PSS design. In [10] the dynamic characteristics of the proposed PSS based on synergetic control theory are studied in a typical single-machine infinite-bus power system and compared with the cases with a conventional PSS and without a PSS.

In this paper the effects of PSS on the stability of power system is presented. The analysis is base on bifurcation theory, small signal stability evaluation and time domain simulations. Finally, the simulation results show the effectiveness and robustness of proposed controller to enhance power system stability by damping oscillations.
2. SYSTEM DESCRIPTION
The system model for excitation control design and stability analysis is usually that of a single generator infinite-bus system. Fig. 1 shows the schematic of single machine connected to a large system through transmission line. The dynamic of the generator is expressed in terms of the electromechanical swing equation and the internal voltage equation.

In most modern systems the AVR is a controller that senses the generator output voltage and initiates corrective action by changing the exciter control in the desired direction. There is a variety of different excitation types. The IEEE type-1 excitation is considered in this paper. Fig. 2 block diagram representation of SMIB with exciter and AVR [12], where T_e and K_{EI} are time constant and gain of the voltage regulator, T_e and K_{EI} are time constant and gain of the stabilizer of the excitation system and E_x is corresponding to the generator internal voltage. The voltage error ΔE is the difference between the reference voltage E_{wR} and the terminal voltage E_{wT}. The transfer function of the exciter is given by:

$$\frac{\Delta E}{\Delta U_w} = -\frac{sT_1}{T_2} + \frac{1}{T_2}$$

Fig. 1. A SMIB system with exciter and AVR

Fig. 2. Block diagram of SMIB with exciter and AVR

Fig. 3. Block diagram of SMIB with PSS

$$G_V(s) = \frac{\Delta E}{\Delta U_w} = \frac{G_s(s)G_{sl}(s)}{1 + G_s(s)G_{sl}(s)G_{se}(s)}$$

3. POWER SYSTEM STABILIZER

PSS are widely used through the excitation system of generator to improve the stability of power system. The basic function of a PSS is to add damping to the electromechanical oscillations by controlling its excitation using auxiliary stabilizing signals. The block diagram model of the SMIB system with AVR and exciter include effect of PSS shows in Fig. 3. The equations of the PSS with one lead-lag network and two constant T_1 and T_2 can be written as:

$$\frac{d\Delta U_w}{dt} = \frac{K_p}{T_1} - \frac{K_p}{J_m} \Delta \delta - \frac{K_p}{J_m} \Delta \omega - \frac{K_p}{J_m} \Delta \delta - \frac{1}{T_2} \Delta U_w + \frac{K_p}{J_m} \Delta P_M$$

$$\frac{d\Delta U_r}{dt} = -\frac{K_p}{T_1} \Delta \delta - \frac{K_p}{J_m} \Delta \omega - \frac{K_p}{J_m} \Delta \delta - \frac{1}{T_2} \frac{T_1}{T_2} \Delta U_w$$

The transfer function of a system represents the relationship describing the dynamics of the system under consideration. The output electrical power of the machine can dynamically be controlled to improve the dynamic performance of the system. The deviation of electromechanical is:

$$\Delta T_{e1} = \frac{K_2 \Delta \delta + K_2 \Delta \omega}{\Delta E}$$

where ΔT_{e1} is change in T_e with the change in δ for E_r constant and ΔT_{e2} is change in T_e with change in E_r when δ is constant. By using the block diagram of the SMIB with PSS, ΔT_{e2} is given by:

$$\Delta T_{e2}(s) = \frac{k_2 G_s(s)G_{sl}(s)G_{sl}(s)G_{sl}(s)}{\Delta U_w(s) - \frac{s}{1} + \frac{k_2 G_s(s)G_{sl}(s)G_{sl}(s)}{s}}$$

4. SIMULATION RESULTS

Digital simulation is carried out by the MATLAB software. For the simulation, different loading conditions with change of parameters in the SMIB system are considered. The block diagram of SMIB equipped with PSS shown in Fig. 4.
The system eigenvalues with and without the proposed stabilizer for nominal and light loading conditions are given in Table 1, which shows the electromechanical mode eigenvalue with its damping ratio for the open loop system without and with PSS. This base system has a low damped electromechanical mode and needs to be stabilized. The damping of the electromechanical is improved as it changes from 0.0027 to 0.0054 with one lead-lag network and to 0.3664 with two lead-lag networks. The rotor angle and electrical power response at nominal operating condition are shown in Figs. 5 and 6. Fig. 7 presents a Bode diagram of the transfer function $\frac{\text{output}}{\text{input}}$ for various currents and voltage loops gains. It can be observed that proposed instantaneous low pass filter, current and voltage controller ensures wide frequency bandwidth for output voltage regulation.

![Fig. 5. Block diagram of SMIB with PSS simulated in Matlab](image)

![Fig. 6. Electrical power response for normal loading](image)

![Fig. 7. Bode plot of controller to output transfer function](image)

5. SUMMARIES

Low frequency oscillations occur frequently due to disturbances such as changes in loading conditions or a loss of a transmission line or a generator unit. The oscillations in a power system generally occur due to the lack of damping torque at the generator rotor. Power system stabilizer is used for oscillation damping in power system. In this paper, the small signal stability performance of a single machine connected to a large system through transmission lines is presented.

REFERENCES

