Friction and heat transfer coefficient in micro and nano channels filled with porous media for wide range of Knudsen number

H. Shokouhmand a, A.H. Meghdadi Isfahani a,⁎, E. Shirani b

a School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
b Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

ARTICLE INFO

Available online 18 May 2010

Keywords:
Porous media
Micro/nano channel
Convection

ABSTRACT

Invoking the velocity slip and temperature jump, numerical simulation of Darcy–Brinkman–Forchheimer flow model and forced convection in a circular micro/nano channel filled with porous media are presented. Relating the viscosity to the local Knudsen number, Kn, a generalized diffusion coefficient is obtained in such a way that it can model wide range of Kn regimes of flow. The effect of Kn and Darcy coefficient on velocity and temperature distribution is described. It is shown that despite of the fact that in most of previous researches it is assumed that Kn is constant along the channel, the variations of Kn due to the pressure variations, have considerable effects on heat transfer and temperature distribution across the channel cross section.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Flow and heat transfer through the porous medium have become one of the most popular research subjects because of its wide applications. With recent advances in micro and nano technology, mechanical devices such as micro/nano channels, nozzles and pumps can be fabricated. In micro/nano devices, porous media can be used for micro filtration, fractionation, catalysis and microbiology related applications [1]. For example, micro packed beds or sintered metal fibers can be used in micro structured reactors for catalytic reaction [2,3] and the filter medium prepared from commercially available glass fibers of 70–140 μm thickness is suitable for applications in bio filtration systems [4]. Also charged porous media structures have been employed in micro devices to magnify the pumping [5,6], mixing [7,8] and separating [9] effects.

Also by reducing the dimensions of a channel, heat transfer area per unit volume increases, thus the overall heat transfer coefficient per unit volume increases. Use of porous media in the channel can verify this phenomenon. The micro porous heat exchangers have better heat transfer performance than the micro channel heat exchangers [10].

Flow in micro devices is different from macro devices. The flow rate in micro ducts is higher than predicted from theories based on continuum flow model. This is because of the fact that the Navier–Stokes equations based on the continuum flow model breaks down when the mean free path of the molecules is comparable to the characteristic length of the flow domain. This phenomenon is called the "rarefaction" (Knudsen flow) [11]. As the channel size decreases the Knudsen number, defined as the ratio of the molecular mean free path (λ) to the characteristic length of system, increases and the flow regime in the channel changes from continuum, to slip flow, transition and finally free molecular regime.

The Knudsen number is a measure of rarefaction of gases encountered in flows through very small size channels, and also is a measure of the degree of validity of the continuum mode. In large Kn, the mean free path of the molecules is comparable with the characteristic length of the flow, therefore the intermolecular collisions are reduced significantly and the collisions of the molecules with the walls become important. Because of the rarefaction, the density of the gas along the channel varies and the velocity of the gas near the solid walls is no longer equal to the wall velocity.

The existence of slip velocity at the wall was first predicted by Maxwell [12]. Because of the slip, the flow rate in micro and nano devices is higher than predicted from no slip boundary conditions. The temperature jump is a classic physical phenomenon which was observed and studied by Smoluchowski [13] and Knudsen [14]. Depending on the value of Knudsen number, four flow regimes exist: Kn<10−3 for the continuum flow, 10−3<Kn<10−1 for the slip flow, 10−1<Kn<10 for the transition flow and Kn>10 for the free molecular flow [15].

Only a few papers can be mentioned for analytical studies on micro channels with cross sections other than circular micro tubes or flow between parallel plate micro channels occupied with porous media [16–23]. All of these papers are limited to the slip regime using Darcy–Forchheimer momentum equation. Also in these papers Kn is assumed constant along the channel which is a crude assumption.
From the Direct Simulation Monte Carlo, DSMC, results and solutions of the linearized Boltzmann equation [24], it is evident that the velocity profiles of flow in a channel in the transition and free molecular regimes remain approximately parabolic. But the velocity profile obtained from continuum-based relations does not predict the flow rate properly [15].

This is because of the fact that the dynamic viscosity which is related to the diffusion of momentum due to the intermolecular collisions must be modified to consider the diffusion of momentum due to the intermolecular collisions and the collision of molecules with the walls. As mentioned in the previous section, in the transition regime, because of the rarefaction, intermolecular collisions and molecule–wall collisions have the same order and in the free molecular regime the molecule–wall collisions is the dominant phenomenon. Polard and Present [25] proposed Eq. 1 for generalized diffusion coefficient as a function of Kn:

$$\mu(Kn) = \mu_0 \left(1 + \alpha Kn\right)$$

where μ_0 is the dynamic viscosity of the gas at a specified temperature and μ is the generalized diffusion coefficient. α is a parameter that varies from zero (at $Kn=0$) to a constant value, α_0, (as $Kn \to \infty$) and can be expressed by Eq. 2 [15].

$$\alpha = \frac{2}{3} C p \tan^{-1} \left(\alpha_1 Kn^p\right)$$

α_0 is determined to obtain the desired free molecular flow rate as $Kn \to \infty$ $\alpha_0 = 4$ and $\beta = 0.4$ are empirical constants.

3. Governing equations

Steady laminar forced convection in a circular micro/nano channel filled with porous media is considered. Here the flow is assumed hydrodynamically fully developed and thermally developing. Applying the unified model, the momentum and energy equations with first order velocity slip and temperature jump boundary conditions are applicable for all Kn regimes.

Eq. 3 is the axial momentum equation [26]:

$$1 + \frac{\partial \Gamma U}{\partial r} + \frac{\partial U}{\partial r} \frac{1}{R} \frac{\partial U}{\partial r} - \frac{1}{\bar{R}} U - \Gamma U^2 = 0$$

By substituting Eq. 1 into Eq. 1, Eq. 4 is obtained:

$$1 + \frac{1}{1 + \alpha KN} \frac{\partial^2 U}{\partial r^2} + \frac{1}{1 + \alpha KN} \frac{\partial U}{\partial r} - \frac{1}{\bar{R} \alpha} \frac{1}{1 + \beta \alpha} \frac{\partial U}{\partial r} - \frac{1}{\bar{R} \alpha} U - \Gamma U^2 = 0$$

where term 1 is the non-dimensional pressure gradient along the channel. The energy equation (Eq. 5) remains unchanged:

$$\frac{\partial \theta}{\partial z} = \frac{1}{PrRe_D} \left[1 \frac{\partial \theta}{\partial \bar{R}} + \frac{\partial \theta}{\partial \bar{R}} \right]$$

Eqs. 4 and 5 are solved subject to the slip (Eq. 6) [27] and temperature jump (Eq. 7) [28] boundary conditions:

$$U(z,1) = \frac{-2 - \alpha_\frac{\theta}{\partial z}}{\alpha_\frac{\theta}{\partial z}} \frac{\bar{R} U}{\partial \bar{R}}$$

$$\theta(z,1) = 1 - \frac{2 - \alpha_\frac{\theta}{\partial z}}{\alpha_\frac{\theta}{\partial z}} \frac{2 \gamma}{\gamma + 1} \frac{\bar{R} \theta}{\partial \bar{R}}$$

Eqs. 8–10 express the boundary conditions at the entrance and center of the channel.

$$\frac{\partial U}{\partial R} (z,0) = \frac{\partial \theta}{\partial R} (z,0) = 0$$

$$\theta(z,R) = 0$$

$$U(z,R) = 1$$
where \(\sigma_V \) and \(\sigma_T \) are the tangential momentum and thermal accommodation coefficients respectively which for most practical surfaces are assumed to be 0.7 [20].

The friction factor and Nusselt number are defined as Eqs. 11 and 12 respectively [29].

\[
C_f = \frac{\tau_w}{\frac{1}{2}\rho U^2} = \frac{\mu \frac{\partial U}{\partial \eta}}{\frac{1}{2}\rho U^2} = \frac{4}{\text{Re}_D} \left(1 + \alpha Kn \right) \left(\frac{dU}{dR} \right)_w \tag{11}
\]

\[
Nu = \frac{hD}{K_m} = \frac{2}{1 - \theta_m} \left(\frac{\partial \theta}{\partial R} \right)_w \tag{12}
\]

where \(\theta_m \) is non-dimensional mixing cup temperature defined as

\[
\theta_m = \frac{\int_{r_m}^{r} \sigma \, dR}{\int_{r_m}^{r} \sigma \, dR}
\]

4. Results and discussion

The Eqs. 4 and 5 were solved numerically using the finite difference method. The momentum equation, Eq. 4, was discretized explicitly and was solved by iteration method, while the energy equation, Eq. 5, was discretized implicitly and the resulted system of algebraic equations was solved by Thomas algorithm [30]. To verify the results, it is noticeable that Eq. 4 with negligible microscopic inertial term \((\Gamma = 0) \) has the analytical solution in the form:

\[
U = \frac{\alpha \sigma - 2}{\eta_v} \frac{K_m}{\sigma} \left(\frac{1}{\sqrt{Da}} \right) - b_0 \left(\frac{1}{\sqrt{Da}} \right) + Da (1 + \alpha Kn) \tag{13}
\]

where \(b_0 \) and \(I_0 \) are the zeroth and first order Bessel functions, respectively. In Fig. 1 the exact and numerical solutions for velocity profile are shown when \(\alpha = 0 \), \(Da = 1 \), \(\Gamma = 0 \) and \(Kn = 0.1 \). There is excellent agreement between the two solutions.

Fig. 2 shows the radial distribution of the axial velocity for different Knudsen numbers in the slip and transitional regimes when \(Da = 1 \), \(\Gamma = 0.1 \).

It can be seen from the figure that by increasing Knudsen number, the velocity and velocity slip increase and at large Kn, the velocity profile is flatter.

Fig. 3 shows the variation of \(\text{CfRe}_{D*}^\circ \) with \(Da \) at different Knudsen numbers for the case that \(\Gamma = 0.1 \). It can be seen that as \(Da \) increases, firstly, \(\text{CfRe}_{D*}^\circ \) increases and then it becomes constant. It is because of the fact that as \(Da \) increases, the porosity, \(\varepsilon \), decreases and the flow in circular channel occupied with porous media approaches the flow in an ordinary pipe, for which \(\text{CfRe}_{D*}^\circ \) is constant. According to the figure, the value of \(\text{CfRe}_{D*}^\circ \) even for large Kn is a function of Kn. It does not support the result of Haddad et al. [19] because of the fact that in their work \(\mu \) is assumed constant but in the present work \(\mu \) is a function of Kn.

In Fig. 4, \(\text{CfRe}_{D*}^\circ \) versus \(Kn \) is shown for \(Da = 1 \), \(\Gamma = 0.1 \) and \(10^{-3} \) \(< Kn < 10 \). The figure shows that as the \(Kn \) increases, \(\text{CfRe}_{D*}^\circ \) decreases. As it was mentioned previously, any increase in Kn would result in an increase in the flow velocity and \(\text{Re}_{D*} \). On the other hand, \(C_f \) decreases due to the decrease in the velocity gradient near the wall. Thus \(\text{CfRe}_{D*} \) decreases with Kn. This means that the reduction in \(C_f \) is more significant, especially when Kn is in the range of \(10^{-2} \) to 3, i.e. in the transition regime.

Fig. 5 shows the effect of Kn variations on the non-dimensional temperature profile in the micro/nano channel at a certain axial location, \(Z = 1 \). Because of the decrease of the pressure along the channel from \(P_i \) at \(Z = 0 \) to \(P_o \) at outlet, Kn, which is a function of pressure is not constant. In the figure the dashed line is for the case when Kn is assumed constant and equal to 0.3 and the solid line is the curve of the case that Kn varies along the channel according to the equation \(Kn = Kn_o \frac{Z}{P} \) where the subscript o indicates the output conditions, where \(Z = 1 \). In the present case \(Kn_o = 0.3 \). It can be seen from the figure that despite the Kn in two cases is the same at \(Z = 1 \),
the temperature profiles are different. This characteristic can be explained as follow: as the pressure decreases along the channel, the Knudsen number increases. Increasing Kn leads to increase the temperature jump at the wall. As can be seen from the figure, the temperature jump for the case where Kn is constant, is higher. Because Kn in the previous sections of the channel in the case where Kn is constant, is higher than the case where Kn is variable, therefore temperature jump is higher and the fluid does not feel the real temperature of the wall and therefore the temperature is lower.

Fig. 5 shows the temperature distribution for two different cases. The first effect is that it leads to increased temperature jump. Therefore heat flux from the wall to the fluid is lower so Nu decreases. The second effect is that it leads to increase in slip velocity at the wall, therefore larger amount of fluid is moved near the wall. As a result larger amount of heat is absorbed from the wall. On the other hand because the temperature of the fluid near the wall is higher than its temperature in center, the increase in velocity near the wall increases the magnitude of ∫ URdR, therefore θm and Nu increase.

For the actual case, when Kn is variable and Kn0 = 0.3. Therefore temperature jump and Nu for the case where Kn is constant is higher than the case that Kn is variable. But for the case that Kn is constant the amount of flow near the wall is higher, and approaching the outlet, it can dominate the Nu decrease due to the temperature jump. Therefore Nu number in the case that Kn is constant is higher.

5. Conclusion

Applying the Darcy–Brinkman–Forchheimer flow model and slip boundary condition, finite difference solution for fully developed velocity distribution in a micro/nano channel of circular cross section, filled with porous media was presented. Convection heat transfer and pressure drop performance of the system, reflected in Nu and CRe were analyzed. Effect of Kn and Da on the system performance is studied. Considering the dependency of viscosity on Kn, a unified flow model for all flow regimes with different Kn was obtained. It was observed that increasing Kn and decreasing Da result in decreasing skin friction. Also, it was found that the variation of Kn along the channel has considerable effects on Nu and temperature distribution across the channel cross section.

References

