Computer Vision in Smart City

Author: Shervan Fekri-Ershad

Affiliation: Faculty of computer engineering, Najafabad Branch, Islamic azad university, Najafabad, Iran

Email: fekriershad@pcp.iaun.ac.ir
Abstract

- Smart city is a city that uses information and communication technology to meet the demands of its citizens. Community involvement in processes is a must for the smart city.
Content

1. Introduction
2. Smart city factors
3. Requirements
4. Computer vision
5. Application of computer vision in smart city
6. Requirements for computer vision system
7. References
By 2040, 65% of the world's population is expected to live in large and medium-sized cities.

The number of cities in the world with populations of over one million is rapidly expanding.
2. Smart city factors

- Application of a wide range of digital and electronic technologies
- Application of information and communication technology to enhance living and working environments
- Creating platforms that will bring people and ICT together to foster innovation and foster knowledge.
3. Requirements

- Smart economy
- Smart human
- Smart mobility
- Smart environment
- Smart life
4. What is computer vision
5. Application of computer vision in smart city

- Authentication in urban areas such as subway, airport, municipality, cinema, etc. to provide faster urban services.
5.1. Human authentication based on computer vision

_authentication means automatically recognizing a person's identity by comparing the parameters of the person in question and comparing it with the information in the database. [1-2]

Figure 1. General flowchart of human identification
5.1. Human authentication based on computer vision

Biometrics

Physiological
- face
- fingerprint
- hand
- iris
- DNA

Behavioral
- keystroke
- signature
- voice

- Finger print
- Hand
- Iris
- Face
- etc
Security

- Vehicle license plate identification
- Face recognition at high-end destinations like airports. [3-4]
5.2. Vehicle license plate identification

- Identifying a license plate means automatically reading a license plate number to check the driver's behavior from a breach or analysis perspective.

Figure 2. General flowchart of vehicle license detection approaches
Increase input data to facilitate and increase accuracy of urban process.
Traffic

- Vehicle counting to measure traffic volume
- Investigation of driving quality for behavioral analysis [5]
- Investigating disused traffic plans
Rapid diagnosis of non-standard functioning of human health
5.3. Driver's drowsiness diagnosis

- Driver behavior analysis including eye and neck function over a specified period of time
- An algorithm for the diagnosis of drowsiness based on parameters such as closed eyes, synchronization of closed eyes, number of consecutive frames closed, eyelid drop, number of non-consecutive frames, etc.

[6-7]

Figure 3. General flowchart of driver’s drowsiness diagnosis approaches
Using smart cars to facilitate transportation [8]
6. Requirements for computer vision systems

- Hardware (sensors, actors, chip, …)
- Software
- Communication (network, internet, …)
- Storage (physical, cloud, …)
References

Thanks for your Attentions