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Abstract
In emergencies where several ground base stations (GBS) are no longer available, mobile

base stations based on unmanned aerial vehicles (UAVs) can efficiently resolve coverage
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issues in remote areas due to their cost-effectiveness and versatility. Natural disasters,
such as a deluge, cause damage to the terrestrial wireless infrastructure. The main chal-
lenge in these systems is to determine the optimal 3D placement of UAVs to meet the
dynamic demand of users and minimise interference. Various mathematical frameworks
and efficient algorithms are suggested for designing, optimising, and deploying UAV-
based communication systems. This paper investigates the challenges of 3D UAV
placement through machine learning (ML) and enhanced affinity propagation (EAP).
Lastly, the simulation results indicate that the proposed approach improves the system
sum rate, interference, and coverage performance compared to DBSCAN, k-means, and
k-means-++ methods. Therefore, this paper identifies UAVs' most effective 3D place-
ment, including minimising the number of UAVs, maximising the number of covered
users, and maximising the system sum rate for an arbitrary distribution of users in the
disaster area. Additionally, this paper addresses the issue of interference minimisation.
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1 | INTRODUCTION

developing future applications, such as smart factories, smart
farms, and smart cities [3, 4].

Unmanned aerial vehicles (UAVs) can assist the terrestrial GBS
network in providing high data rate services whenever space
and time are necessary. In contrast to terrestrial wireless net-
works, UAV networks possess numerous unique attributes,
including highly dynamic network topologies, orbits, and flight
trajectories. To extend the duration of flights, due to the energy
source's limitations, it is necessary to incorporate low-energy
design elements into airborne systems, such as path planning
[1] and resource allocation [2]. In IoT networks, unmanned
aerial vehicles (UAVs) can operate as stationary aerial base
stations for IoT communications or act as mobile aggregators
to collect data from IoT devices and transmit information to
them. The integration of numerous sensors through IoT and
machine-to-machine (M2M) communications is ctrucial for

Furthermore, 6G technology is expected to provide a
comprehensive framework for connected devices and auto-
mation systems, including self-driving cars and UAVs [5].
UAVs are increasingly regarded as vital components of these
networks, as they enhance communication and computing
capabilities at the devices' locations. Consequently, mobile edge
computing services provided by UAVs can play a significant
role in addressing the data processing needs of IIoT devices,
effectively managing challenges related to computational off-
loading and latency [6].

To achieve optimal or near-optimal performance, one of
the primary challenges of designing UAV-based communica-
tion systems is determining the appropriate horizontal and
vertical position of UAVs and the path of movement of UAVs
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relative to other ground or flying objects [7]. Temporary
coverage issues in remote areas or when terrestrial wireless
infrastructure is damaged by a natural calamity, such as an
earthquake or flood, can also be addressed by UAVs due to
their rapid deployment in these areas. The 3D placement of
UAVs is one of the most fundamental issues in UAV-based
witeless communication. This paper examines UAVs' effi-
ciency and optimal 3D deployment in emergency scenatios,
considering network objectives such as enhancing network
coverage, capacity, and system limitations. To delve into the
research topic, we will concisely review the current literature
regarding the optimal deployment of unmanned devices as
aerial BSs in wireless networks.

In reference [8], the joint optimisation of placement and
power allocation of multiple UAVs concerning ground users in
an unknown area was performed. Game theory was employed
to formulate the optimisation problem. Then, a robust and
distributed learning algorithm is proposed to guide multiple
UAV flight schedules to maximise the total rate for all ground
users under specific flight areas and power constraints.

The authors in reference [9] proposed the decentralised
optimisation of multiple UAV paths in real-time sensing ap-
plications using the Q-learning method, which was examined.
An orthogonal frequency-division multiple access (OFDMA)
single-cell UAV network was considered, where the UAVs
transmit sensor data to a ground base station (BS) through
orthogonal sub-channels to prevent mutual interference. The
locations of the ground base station and the UAVs are speci-
fied with 3D coordinates. The authors in reference [10]
investigated 3D UAV placement that maximises the number of
covered users with different quality of service (QoS) re-
quirements using minimum power. In this paper, the problem
is modelled as a multiple concentric circles location problem to
maximise the number of covered users. Then, the UAV
deployment problem is separated into vertical and horizontal
dimensions, and after some mathematical operations, an
improved multi-population genetic algorithm (MPGA) is
proposed. The authors in reference [11] minimise the total
transmission power of users while satisfying some QoS con-
straints. Therefore, the performance of two proposed ap-
proaches for joint communication and positioning based on
genetic algorithm (GA) and particle swarm optimisation (PSO)
is investigated, and it is shown that both solutions improve
user satisfaction with the provided data rate compared to the
competitive approach. The results show that whereas PSO is
less complex than GA, GA requires a small number of active
UAVs to provide services to users. In reference [12], a multi-
UAV system is considered where mobile base stations
installed on the UAV serve the users on the ground. An iter-
ative approach using block gradient descent is used to jointly
optimise user timing, UAV trajectories, and transmission power
to maximise throughput over all users. Subsequently, an
innovative technique for initial path prediction was developed
using a k-means clustering algorithm to divide users into
subgroups and a genetic algorithm to initialise the shortest
flight paths within clusters. In reference [13], k-means clus-
tering is used for two-dimensional localisation between UAVs

and users. A particle swarm optimisation (PSO)-based
approach is proposed to maximise spectral efficiency while
considering co-channel interference from other UAVs to
determine the optimal altitude, ensuring the minimum required
quality of service (QoS). The authors in reference [14] mini-
mised the number and delay in UAV deployment which was
examined. To this end, the minimum number of UAVs
required to cover the disaster area was first determined using
the k-means clustering algorithm, considering users' bandwidth
constraints and determining the UAVs' two-dimensional co-
ordinates. Then, a rapid UAV deployment algorithm was pro-
posed to minimise the delay in UAV deployment. In reference
[15], an optimal UAV deployment algorithm is proposed by
considering the priority of ground nodes in various wireless
communication environments. Solving the mixed integer
second-order cone programming (MISOCP) problem finds the
optimal UAV position. The authors in reference [16] proposed
the k-means and a 3D UAV power allocation algorithm by Q-
learning to maximise system capacity. In other words, a k-
means algorithm is adopted to optimise horizontal positions
and Q-learning to optimise power allocation.

Accordingly, the authors in reference [17] investigate the
joint design of the 3D placement and power control for sum-
rate maximisation. They decoupled the optimisation problem
into two sub-problems: (i) 3D placement and user association
and (ii) sum-rate maximisation. To solve the problem, they
propose a heuristic algorithm to determine the minimum
required UAVs. Then, an iteration algorithm is used to opti-
mise the UAV 3D placement and user association. The authors
in reference [18] presented an optimisation study to improve
the lifespan of UAV-assisted cluster-based wireless sensor
networks (WSNs) deployed in a 3D environment. This study is
based on two algorithms: (1) particle swarm optimisation
(PSO) for clustering problems in the WSN and (2) genetic
algorithm (GA) for UAV placement to maximise the lifetime.
The authors in reference [19] present a systematic mapping
study on 3D placement in UAV-enabled communication sys-
tems. Heuristic algorithms prevail as the solution strategy. They
focus on optimising data rate and throughput. Table 1 includes
research related to placement in UAV-based communication
networks.

As observed, there is a research gap regarding investi-
gating UAV communications in emergency or disaster areas,
which is worth studying to improve wireless services further.
Additionally, the solutions used either employ mathematical
modelling methods or, in most cases, reinforcement learning
algorithms in machine learning methods. Reinforcement
learning methods face numerous challenges, such as the
need to implement and design a reward function, a signifi-
cant demand for processing power, the difficulty in gen-
eralising different algorithms to environments, complex
mathematical foundations, and the difficulty of imple-
mentation. In addition, game theory often relies on static
strategies and without big data. Therefore, the proposed
EAP algorithm can improve over time through learning
from data and can be more dynamic, whereas game theory
often relies on static methods. Because the data is significant
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TABLE 1 Placement issues in UAV-based networks.
GBS

Reference Placement target Problem-solving method Sum rate User distribution Interference Coexistence
Reference [8] Sum rate Game theory Yes Uniform Yes No
Reference [9] Data transmission Q-learning No - Yes No
Reference [10] QoS MPGA No Uniform No No
Reference [11] Total power PSO No Uniform No No
Reference [12] Throughput kmeans No Random Yes No
Reference [13] QoS PSO, k-means No PPP Yes No
Reference [14] Coverage k-means No Random No No
Reference [15] Coverage MISOCP No PPP No No
Reference [16] Capacity Q-learning No Uniform Yes No
Reference [17] Sum rate Heuristic No Random Yes No
Reference [18] System lifetime PSO, GA No Random No No
Reference [19] Throughput Heuristic No - Yes No
This paper Sum rate EAP Yes Arbitrary Yes Yes

in this problem and the environment is dynamic, the pro- 2.1 | GBS-to-UAV propagation model

posed EAP algorithm is more efficient and can adapt to
changing data and environments.

This paper proposes a data-driven 3D placement for
multiple UAVs in emergency or disaster areas. We focus on
high-density scenarios with heterogeneous UE distributions.
The proposed deployment method should automatically
determine the number, location, altitude, and coverage of
appropriate UAVs. This issue will address optimising the sys-
tem sum rate and minimising interference. For this purpose,
propagation models will be explained in Section 2. Then, in
Section 3, the proposed 3D placement algorithm will be pre-
sented. In Section 4, the simulation results of the proposed
algorithm will be evaluated, and finally, in Section 5, the
conclusion will be stated.

2 | SYSTEM MODEL

A cellular system is considered where one or more ground
base stations (GBS) are inactive due to congestion or infra-
structure failure. Therefore, a network of UAVs is deployed to
maintain connectivity for ground terminals. An urban area
with a specific number of users is considered. The goal is to
find the minimum number of UAVs and their 3D locations to
provide services to users in that area. A UAV-assisted cellular
system consisting of one GBS and a set of UAVs,
u = {U,U,...,U}, is considered. In an urban scenario, K
is the maximum number of available UAVs. With the help of
UAYV, the cellular system provides services to a set of UEs,
E = {uj,up,...,un}, and the total number of UEs is
|E| = N. Radio propagation models for downlink trans-
missions include three modes, which will be discussed in the
following sections.

In the considered system model, the GBS uses directional
mmWave antennas to transmit signals to the UAV. UAVs fly at
relatively high altitudes, so the GBS-to-UAV channel would be
the most straightforward path loss model using LoS links be-
tween the GBS and the UAV that propagate in open space; the
average path loss in dB of the 28 GHz mmWave signal is
presented in reference [20].

Lf’g = 61.4 + 20 log, (d; ) (1)

where djg is the distance between the GBS and Uj and
7 =1,2,...,k is in metres.

2

PR — Pmmu’/ave TgR ¢ (2)
G &G mm W ave
! / 47rdj,GfC

mmW ave
where Pg.

is the constant transmission power of the
mmWave antenna, gg is the gain of the GBS transmitting
antenna, gR is the receiving gain of the Uj antenna, ¢ is the
. mmWave . . .
speed of light, f/ is the catrier frequency used in the

backhaul link. According to Equation (1), the received signal-
to-noise ratio (SNR) in a UAV is as follows:

Prngﬂve (1OLJME/1O) -1
bk
VG = mm W ave > Vi (3)

Bj,G M)

where B;zg' Wave i the allocated bandwidth (in Hz) of the
mmWave backhaul link for UAV, Uj, and N, is thermal noise
power spectrum density and yflf is a certain threshold of the
mmWoave backhaul transmission. According to Equation (3)
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and Shannon's theorem, the backhaul capacity of a UAV, Uj,
can be shown as follows:

C, =B Ve log, (1 + }’]‘.G> (4)

2.2 | UAV-to-UE propagation model

The second propagation model is used for the downlink
transmission from a UAV to a UE. The authors in reference
[21] modelled the air-to-ground (ATG) channel with deriva-
tions of the probabilities of LoS (line of sight) and NLoS
(non-line of sight) signals, and now their proposed channel
model is widely used in UAV communications. Such a radio
propagation model is known as an air-to-ground propagation
channel. It is typically modelled by considering L.oS and NLoS
signals separately, along with their respective probabilities. The
effect of fading can be ignored because it only accounts for a
small percentage [22]. The average ATG channel model be-
tween a UAV and a ground user is denoted as L_l], where

E‘J‘ = PLoS X Plios + PNLoS X PILNIos- Where PLios and
PLnios indicate the path loss of different signal groups in the
air-to-ground  link and also the probability of

Pnios =1 — Pros. According to reference [21], L_ZJ was
measured.

— A
Y1+ Cexp(=D[f - C])

+10 1og</o2 + 72) +B (5)

whete A = 11,5 — Hnios> Mos 20d #Npos are the average
additional losses for LoS and NILoS in dB, B =
20 log fo + 20 log 4w/ + fnpos, fe is the carrier frequency

of the fronthaul link. C and D ate constants that depend
on the environment (rural, urban, dense urban or other),

. . N _ 180 . —1 b
and 6 is the clevation angle. Clearly, 8 = sin (d(xo/))’

s 1

di(x,y) = \/(x -x) + (y - yi)2 + b

The parameter values are shown in Table 2:

P;;, is the minimum transmission power required to send a
signal from the UAV to a UE, if the received signal-to-inter-
ference-plus-noise ratio (SINR) in a UE is greater than the
threshold value y,;, the transmission is successful. Therefore,

TABLE 2 Propagation parameters [23].

Environment C D NLos INLoS
Suburban 4.88 0.43 0.1 21
Urban 9.61 0.16 1 20
Dense urban 12.08 0.11 1.6 23
High-rise urban 27.23 0.08 2.3 34

the SINR for each UE associated with the UAV U; is equal to

the following equation:

-1

P (105/10)
= > 6
Vij [GJr[%\{U]}JrBZ_IJ_M) Vb (6)

whete [g is the received interference powet from the GBS and
-1

]”\{Uj} = Zf P. ;(10Lz.j 10) 1///7]; is the interference po-

=1 1y
wer of nearby UAVs. l//j]: = 1if u; is located in the overlapping

coverage area of UAV U, and U, and U. € u, ¥ #j otherwise
j ]

.. = 0. According to Shannon's theorem and Equation (6),
7

the allocated data rate (in bps) of each #; associated with U; will
be as follows:

Cij ZB,"]‘ log, (1 +}/iJ-> (7)

where B;; is the allocated bandwidth (in Hz) of the wireless
connection from the UAV to each #;. The transmission power
assigned to the desired #; can be given by the following
equation:

Piy =105/ (I + 1, gy + Bl (2% 1) (8)

Then, the total transmission power of the UAV to serve its
associated #; can be calculated as follows:

Pj= ZPZ-,]- (9)

where M is the number of UEs associated with each UAV.
According to Equation (9), the data transmission rate of the
UAV to serve its associated UEs:

N

C= ZC;',]‘ (10)
=1

2.3 | GBS-to-UE propagation model

For the terrestrial wireless channel between points p; and p,, a
standard path loss power law Ly, 5, = || P — H ~% with path
power loss a > 2 is considered. All terrestrial broadcast signals
are assumed to experience independent Rayleigh fading, and
the GBS transmits with fixed power Pg for terrestrial com-
munications. Therefore, the received power of each UE pro-
vided by the GBS is Pghr; ¢, where b ~ exp(1) is the
Rayleigh fading and 7; ¢ is the horizontal distance between the
UE and the GBS. Because there are £ UAVs in the considered
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system, the co-channel interference power experienced by a N .
UE can be expressed as follows: Z ¢ij0ij < C]‘ J=12,...k (20)

k k -
Iy=>Y Pl = ij(mlw/w) 1 (11)
=1 =1

where P; is the transmission power of the UAV and 7;; is the
distance of each UE to the UAV. The SINR statement for each
user that can connect to the GBS is as follows:

Pc;lfﬂ’l_g»

= BT 12
10 = LT BN, T (12)

-1, .
where Iy = ZvU,G”Pj(loL”-'/lo) is the total interference
]

power from other isolated UAVs and B;g is the allocated
bandwidth (in Hz) to the UE with the GBS. The achievable
data rate (in bps) of a UE associated with the GBS can be
calculated as follows:

GG = Bzﬂ,G logz (1 + }/in> (13)

Thus, the potential transmission rate (in bps) of the GBS
can be obtained.

G e
Co= —7CiG= Z GG (14)
7TTG )

where 7 is the GBS coverage radius, Ag is the UE density of
the GBS service coverage, ¢; G is the average data rate of a UE
associated with the GBS, and Ng is the number of UEs
associated with the GBS.

3 | THE PROPOSED 3D PLACEMENT
ALGORITHM

The decision-making problem for placing the 3D UAV can be
defined as follows. The considered problem is to search for

suitable location parameters (xj, Vs /9]~, 77) of each UAV with a

minimum number of k. 0 <k < K, so that:

N k N
max Z ¢.Goig+ Z Z Cij6i; (15)
%:9j:h75 1 =1 =1
st 75 < Tinas (B) (16)
bmin S ]9] S bmax (17)

Cij0i; + €60, = Cmin, £ = 1,2, ..., N

j=1,2,.. .k (18)

N ~
> ciedic < Co (19)

=1

=1

N kN

> gt Y sij=N (21)
i =1 =1

where the two indicator functions 6; and §;; are defined as
follows:

0, otherwise

5,,_{17 if ;>
ij =

k
5in =1- Zj:lﬁi‘j (22)

In the considered problem Equation (15), the maximum
coverage U, 7max (bj) in Equation (16), and the relationship
between the height and the maximum coverage of a UAV
are discussed in reference [24]. In constraint Equation (17),
the deployed height of each UAV depends on the constraints
of local laws and the capability of the UAV. Additionally, in
Equation (18), we consider the minimum data rate demands
from the cellular operator aspect and define a parameter Cpi,
for each UAV or GBS to guarantee the minimum data rate
allocated to a UE within the constraints. Constraint Equa-
tion (19) guarantees that the total transmission rate of the
downlink connection from the GBS and its associated UEs

does not exceed the maximum data rate capability CG.
Constraint Equation (20) is used so that the total trans-
mission rate of the downlink from the UAV to its associated
UEs does not exceed the maximum data rate allocated to
the backhaul link in U. Constraint Equation (21) causes
each UE to be associated with only one UAV or GBS at a
time.

Next, a data-based location is proposed to improve the
overall performance of the UAV-assisted cellular system,
especially for unpredictable events or flash congestion with
high-density distributed users.

In Equation (15), the system sum rate mainly depends on
N = 25\1:151*7]’ and Ng =1 — Z]N:ﬁi.j, which are deter-
mined by UAV positioning, The proposed approach uses the
location information of UEs, UAVs and GBSs to provide an
effective location of the UAV. The wvariable Lg = (x(;,y(;)
records the coordinates of the GBSs, an array Lg stores the
location of the UEs, and an array Ly stotes the location (co-
ordinates) of the UAV. In the initialisation phase, the system
calculates the received power of each UE from the GBS and
PRG = PGb”i,_C(;Z in a set Sg, where 1 <7< N stores. GBS

Z
distances to all UEs ate stored in a Dg set. Intuitively, the UAV
is used to assist the GBS, and first, the initial communication
between the GBS and each UE is established. Because the
number and location of deployed UAVs are unknown at this
stage, the interference power cannot be obtained. Instead, the
initial connection between the GBS and each UE is determined

by the condition y; g > 7, whete ¥;  is the SINR regardless
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of interference. The number of UEs with SINR values higher
than y,, is represented as NtGemp. In addition, according to
Equations (13) and (18), the upper bound of Ng can be ob-
tained as follows:

NE™ = Blog,(1+7.)/Cmin (23)

where B¢ = B/NG. Therefore, we select Ng = min(Ntémp,
NE™ ) UEs with high SINR values associated with the GBS.

After the initial GBS communication, the system can
determine the number of UAVs for clustering UEs using the
enhanced affinity propagation algorithm. Density-based clus-
tering is a method of clustering data based on the density of
points in the data space. The DBSCAN (density-based spatial
clustering of applications with noise) algorithm is one of the
famous algorithms in this category, and it performs well in
cases where the data has irregular shapes. Still, for enormous
data sets, the calculations can be time consuming. Hierarchical
clustering is another data clustering method that creates a hi-
erarchical or tree structure of clusters. Unlike partitioning
clustering methods (such as k-means), instead of creating a
fixed set of clusters, it makes a tree structure that shows how
the clusters are composed of or related to each other and is
useful when the hierarchical structure of the data is of interest.
Therefore, it is not suitable for data in this problem. Unlike
traditional clustering algorithms such as k-means or hierar-
chical clustering, the AP algorithm does not need to determine
the number of clusters in advance. The advantage of the AP
algorithm is its ability to determine the number of clusters
automatically based on the input data [25]. Instead of using a
similarity (distance) matrix, this algorithm uses three matrices
to find affinity: (a) similarity matrix, (b) responsibility matrix,
and (c) accessibility matrix. In each step of this algorithm, the
mentioned matrices are updated, and the updating process is
repeated so that the changes do not exceed the tolerance limit
set by the user. This algorithm is suitable for data that can have
many clusters.

In the second step, each UE is associated with at least one
UAV. Therefore, for each UE, y; ;j must be greater than the
specified threshold y,;, so that each #; can be associated with the
UAV. Generally, the allocated data rate ¢; and SINR y;; of #;
increase when the distance 7;; between #; and U]' decreases. We
consider a variation of the weighted assignment problem, the
capacity clustering problem (CCP). CCP is an NP-complete
decision problem. Given a set of N UEs and a set of & UAVs
k<N, if 7; j 1s the horizontal distance between UE and UAV
(cluster centre), then ¢;; the allocated data rate from UE, C]- is the
backhaul limit for the UAV, and then find £ distinct subsets of
UEs such that the total horizontal distance value of the selected
UEs is minimal. Each subset can be assigned to a different UAV
whose backhaul limit is less than the total horizontal distance of
UEs, which is not in the subset. So,

kN

min Z erﬁw (24)
=1 i=1

Note that 7;; in Equation (24) represents the cost function
for clustering. A customised cost function can be substituted
for 7;; to obtain a different clustering result. At this stage, the
k-medoid clustering method is adopted in the proposed
method. In k-medoids, the cluster centre is a real data point
and can be easily interpreted. Therefore, it is less sensitive to
outliers and provides more stable clustering;

After this step, the system receives the k-centre point of
the generated clusters. Suppose the horizontal coverage of each
UAV-to-ground mapping is considered an ideal circle, and each
UAV is deployed directly at the centre point of each cluster. In
that case, the horizontal coverage radius of each UAV is the
horizontal distance from the centre point to the farthest UE of
each cluster—however, a system with such positioning results
in a large coverage area. If the coverage area of the overlapping
area increases, the distance between different deployed UAVs is
short. Such placement may lead to severe interference between
UAVs. Most dissatisfied users are located in overlapping
coverage areas. Therefore, reducing interference improves user
satisfaction and ensures that most UEs achieve the minimum
data rate [20].

The last task of this step is to judge whether the obtained
candidate position is valid by checking the presence of
dissatisfied UEs. If there are any unsatisfied UEs, the obtained
candidate location is invalid, and the value of £ may be too
small to satisfy the UE demand in the considered scenario.
Thus, the system performs the entire steps of this step
repeatedly with & = B + 1 until the obtained candidate
location is valid.

4 | RESULTS

The simulation framework leverages the power and flexibility
of the Python programming language. Because of the un-
availability of accurate data, we artificially generate sets of
input spatial data with a non-uniform distribution over an
area of 1200 square meters, which includes a varying
number of UE locations [27]. The generated data accurately
reflects the characteristics of the original data. We consider
an urban scenario. The urban scenario and air-to-ground
channel model provided by the authors in reference [5]
(C, d,nLoS,nNLOS) = (9.61,0.16,1,20) are considered, and
the maximum allowable path loss for the UAV-to-UE link
Ly =119 dB is assumed. Other important simulation
parameters and predefined constraints are presented in
Table 3.

To compare the proposed method, namely the enhanced
affinity propagation (EAP) algorithm, DBSCAN, k-means, and
k-means++ approaches [28] are used in the simulation. The
GBS is located at the coordinate (500, 700) in this scenatio. In
Figure 1, the blue triangle represents the GBS, the black
crosses represent the UAVs, the tiny dots represent the UEs,
and each circle represents the corresponding UAV coverage
area. This method uses the enhanced affinity propagation
(EAP) algorithm.
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TABLE 3 Simulation parameters [27].

Parameter Value  Parameter Value Parameter Value

Pg 40 dBm P 20 dBm PE"Ve 30 dBm

* 63 fimin 10%bps N ~174 dBm/Hz clustering algorithms.
Bunin 20m  fi 2GHz  fmVe o8 GHy

Do 400m B 20 MHz  B"W4* 2000 MHz

n 5dB  ypmWee  30dB

Figute 3 shows the results of location for N = 1300 using the
DBSCAN with £ = 52, k-means with k£ = 42, and k-means++
with k£ = 37 clustering algorithms. Therefore, in the proposed
method, placement can be optimised with fewer UAVs. Unlike

['N

', 1300, 'k =",27]

The simulation results are as follows:

Figure 2 shows the optimal height of each UAV with
k = 27 in the proposed method. Figure 3 shows the place-
ment results using the DBSCAN, k-means, and k-means++

1200 1

1000 4

800 +

600

400

200 4

200

FIGURE 1 Placement results with £ = 27, N = 1300.
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300 1
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15
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FIGURE 2 The optimal height of each UAV in the proposed method.
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FIGURE 3 Placement results (a) k-

1200 +

1000

means++ with &£ = 37, N = 1300, (b) k-
means with & = 42, N = 1300, and
(c) DBSCAN with & = 52, N = 1300.
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200 4
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['N=",1300,"'—k="42]
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600 4

400

1200

1000

600

400

200

the conventional approaches, which cannot determine the value
of k by the algorithms themselves, the proposed method can
automatically determine the value of k. For instance, in the k-
means method, the algorithm starts from the initial value of
k= 28 and reaches the value of £ =42, and the algorithm repeats

1000 1200

every step, which takes a lot of calculation time. Consequently,
the system can save significant computational costs (time and
energy) when evaluating the impossible value of k.

In the following, we present an analysis of clustering
metrics. Several metrics can be used to evaluate the quality of
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TABLE 4 Definitions of metrics.

Metrics Definition

Range

Silhouette score

It is calculated based on the difference between the intra-cluster distance and the

Between —1 and 1

closest distance to another cluster. A value closer to +1 indicates better clustering.

Davies—Bouldin

It is the ratio of the intra-cluster distance to the distance between clusters. A lower No upper bound, but lower values (ideally close

index value in the Davis—Bouldin index indicates more effective clustering. to 0)

Calinski—-Harabasz

Measures the ratio of the distance between clusters to the distance within clusters. A Does not have a strict upper bound.

index higher value in this index indicates higher-quality clustering.

TABLE 5 Comparison of clustering

Metri DBSCAN k- k- P d thod
methods with different metrics. etries means means++ roposed metho
Silhouette score —0.4383 —0.1733 0.3116 0.5529
Davies—Bouldin index 1.8788 1.7671 0.8439 0.1799
Calinski—Harabasz index 31.6746 37.9824 50.9581 68.5303
—&— k-means++ Method with the GBS
7000 1 k-means Method with the GBS
—+— dbscan Method with the GBS
—e— The Proposed Method with the GBS
6000 1 —* only one GBS
5000 A
B
3
P 4000 A
c
3
a
£ 3000 4
3
&
2000 4
1000 A
04 -
4(')0 660 8(')0 10'00 12'00 14'00

Number of UEs

FIGURE 4 Comparing the system sum rate in the proposed method with GBS, the k-means++ method with GBS, the k-means method with GBS, the

DBSCAN method with GBS, and only one GBS without UAVs.

the proposed clustering method, with the choice depending on
the data type and clustering objective. Distance-based metrics
assess clustering quality without requiring actual class labels.
Because accurate class labels are unavailable (unsupervised
clustering), the Silhouette, Davies—Bouldin, and Calinski—
Harabasz indices are employed. Table 4 shows the defini-
tions of these three metrics and their ranges [29].
Subsequently, the Silhouette score, Davies—Bouldin index,
and Calinski-Harabasz index were computed for each clustering
result to observe the performance metrics, shown in Table 5.
Table 5 shows that the Silhouette score in the proposed method
is 0.5529, indicating a good separation between clusters. The
Silhouette score is greater than 0, indicating that the algorithm
has effectively generated clusters and has not encountered
overlap, and the interference problem is completely solved. On

the other hand, when the Calinski-Harabasz score in the pro-
posed method is 68.5303, it indicates relatively high cluster
density and separation in that specific number of clusters, and
there is significant differentiation between clusters, indicating a
favourable clustering result. In addition, the Davies—Bouldin
score of 0.1799 indicates excellent separation between the
clusters. Therefore, the proposed method has better clustering
than DBSCAN, k-means, and k-means+-+ methods in terms of
the three metrics: the Silhouette score, Davies—Bouldin index,
and Calinski-Harabasz index, and is more capable of solving the
problem of interference.

Figure 4 compares the system sum rate in different methods
despite the different UE numbers between 400 and 1400.

Figure 4 shows that deploying UAVs in the proposed
method, compared to scenarios without UAVs and scenarios
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with k-means, k-means++, and DBSCAN clustering algo-
rithms, significantly increases the system sum rate.

5 | CONCLUSION AND FUTURE WORK

This paper investigates the optimal 3D placement of un-
manned aerial vehicles (UAVs) with ground-based systems
(GBSs) to provide services in emergency areas with variable
population density. A novel 3D placement algorithm based on
enhanced affinity propagation is presented in this regard.
Unlike existing methods, the proposed algorithm can deter-
mine the optimal number, placement, and coverage of each
UAV. Simulation results show that the proposed approach
improves the system sum rate compared to the comparative
methods DBSCAN, k-means, and k-means++, while effec-
tively providing the minimum required data rate for each user
(UE). In addition, the proposed algorithm significantly avoids
the interference problem. These findings indicate the high
efficiency of the proposed algorithm in optimising the place-
ment of UAVs to provide emergency services in environments
with variable population densities. Furthermore, future di-
rections could include innovations in energy management,
potentially involving techniques like dynamic power control,
weather conditions, and prolonged UAV flight times, which are
crucial for maintaining long-term coverage during extended
disaster recovery efforts. Finally, future studies could focus on
advanced ML algorithms to improve UAV adaptability, real-
time decision-making, security aspects, and interference con-
environments with different channel

trol in complex

conditions.
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