Wireless Communication
Session 4
Wi-Fi IEEE802.11 standard

M. Daneshvar Farzanegan

Soourosh.blogfa.com
smdanesh@yahoo.com
Reminder on frequencies and wavelengths

VLF = Very Low Frequency
LF = Low Frequency
MF = Medium Frequency
HF = High Frequency
VHF = Very High Frequency
UHF = Ultra High Frequency
SHF = Super High Frequency
EHF = Extra High Frequency
UV = Ultraviolet Light

Frequency and wave length:
\[\lambda = \frac{c}{f} \]

wave length \(\lambda \), speed of light \(c \approx 3 \times 10^8 \text{m/s} \), frequency \(f \)
Frequencies for mobile communication

- VHF-/UHF-ranges for mobile radio
 - simple, small antenna for handset
 - deterministic propagation characteristics, reliable connections
- SHF and higher for directed radio links, satellite communication
 - small antenna
 - large bandwidth available
- Wireless LANs use frequencies in UHF to SHF spectrum
 - some systems planned up to EHF
 - limitations due to absorption by water and oxygen molecules (resonance frequencies)
 - Weather-dependent fading, signal loss caused by heavy rainfall etc.
<table>
<thead>
<tr>
<th></th>
<th>Europe</th>
<th>USA</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile phones</td>
<td>Dig. Dividend 800MHz</td>
<td>AMPS, TDMA, CDMA 824-849 MHz,</td>
<td>PDC 810-826 MHz, 940-956 MHz;</td>
</tr>
<tr>
<td></td>
<td>GSM 890-915 MHz, 935-960 MHz;</td>
<td>869-894 MHz; TDMA, CDMA, GSM 1850-1910 MHz,</td>
<td>1429-1465 MHz, 1477-1513 MHz</td>
</tr>
<tr>
<td></td>
<td>1710-1785 MHz, 1805-1880 MHz</td>
<td>1930-1990 MHz; UMTS 1850-1910 MHz</td>
<td>UMTS 1749.9-1784.9 1844.9-1879.9</td>
</tr>
<tr>
<td></td>
<td>UMTS 1920-1980 MHz, 2110-2170 MHz</td>
<td>1930-1990 MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LTE 800 and 2600MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordless telephones</td>
<td>CT1+ 885-887 MHz, 930-932 MHz;</td>
<td>PACS 1850-1910 MHz, 1930-1990 MHz</td>
<td>PHS 1895-1918 MHz</td>
</tr>
<tr>
<td></td>
<td>CT2 864-868 MHz</td>
<td>PACS-UB 1910-1930 MHz</td>
<td>JCT 254-380 MHz</td>
</tr>
<tr>
<td></td>
<td>DECT 1880-1900 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wireless LANs</td>
<td>IEEE 802.11 2400-2483 MHz, 5725-5875 MHz</td>
<td>IEEE 802.11 2400-2483 MHz, 5725-5875 MHz</td>
<td>IEEE 802.11 2471-2497 MHz, 5725-5875 MHz</td>
</tr>
</tbody>
</table>

Note: in the coming years, frequencies will become technology-neutral
Characteristics of Wireless LANs

Advantages
- flexibility
- (almost) no wiring difficulties (e.g., historic buildings)
- more robust against disasters like, e.g., earthquakes, fire - or users pulling a plug...

Disadvantages
- lower bitrate compared to wired networks
- More difficult to secure
Scope of Various WLAN and WPAN Standards

WPAN: Wireless Personal Area Network

Power consumption

Complexity

Data rate
Design goals for wireless LANs

- low power
- no special permissions or licenses needed to use the LAN
- robust transmission technology
- easy to use for everyone, simple management
- protection of investment in wired networks (internetworking)
- security, privacy, safety (low radiation)
- transparency concerning applications and higher layer protocols
- location awareness if necessary
Infrastructure vs. ad hoc networks

Infrastructure network

Wired network

Ad hoc network

AP: Access Point
IEEE 802.11 - Architecture of an infrastructure network

Station (STA)
- terminal with access mechanisms to the wireless medium and radio contact to the access point

Basic Service Set (BSS)
- group of stations using the same radio frequency

Access Point
- station integrated into the wireless LAN and the distribution system

Portal
- bridge to other (wired) networks

Distribution System
- interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS
802.11 - Architecture of an ad-hoc network

Direct communication within a limited range

- Station (STA): terminal with access mechanisms to the wireless medium
- Basic Service Set (BSS): group of stations using the same radio frequency
Interconnection of IEEE 802.11 with Ethernet

mobile station

server

access point

infrastructure network

application

TCP

IP

802.11 MAC

802.11 PHY

application

TCP

IP

802.3 MAC

802.3 PHY

802.3 MAC

802.3 PHY
802.11 - Layers and functions

MAC
- access mechanisms, fragmentation, encryption

MAC Management
- synchronization, roaming, MIB, power management

PLCP (Physical Layer Convergence Protocol)
- clear channel assessment signal (carrier sense)

PMD (Physical Medium Dependent)
- modulation, coding

PHY Management
- channel selection, MIB

Station Management
- coordination of all management functions

<table>
<thead>
<tr>
<th>PHY</th>
<th>IP</th>
<th>MAC Management</th>
<th>Station Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAC</td>
<td>MAC Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLCP</td>
<td>PHY Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PMD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
802.11b - Physical layer

2 versions: DSSS and FHSS (both typically at 2.4 GHz)
- data rates 1, 2, 5 or 11 Mbit/s

DSSS (Direct Sequence Spread Spectrum)
- DBPSK modulation (Differential Binary Phase Shift Keying) or DQPSK (Differential Quadrature PSK)
- chipping sequence: +1, -1, +1, +1, -1, +1, +1, -1, -1, -1 (Barker code)
- max. radiated power 1 W (USA), 100 mW (EU), min. 1mW

FHSS (Frequency Hopping Spread Spectrum)
- spreading, despreading, signal strength
- min. 2.5 frequency hops/s, two-level GFSK modulation (Gaussian Frequency Shift Keying)
Traffic services

- Asynchronous Data Service (mandatory)
 - exchange of data packets based on “best-effort”
 - support of broadcast and multicast

- Time-Bounded Service (optional)
 - implemented using PCF (Point Coordination Function)

Access methods (called DFWMAC: Distributed Foundation Wireless MAC)

- DCF CSMA/CA (mandatory)
 - collision avoidance via randomized “back-off“ mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)

- DCF with RTS/CTS (optional)
 - avoids hidden terminal problem

- PCF (optional and rarely used in practice)
 - access point polls terminals according to a list

DCF: Distributed Coordination Function
PCF: Point Coordination Function
Priorities

- defined through different inter frame spaces
- no guaranteed, hard priorities
- **SIFS (Short Inter Frame Spacing)**
 - highest priority, for ACK, CTS, polling response
- **PIFS (PCF IFS)**
 - medium priority, for time-bounded service using PCF
- **DIFS (DCF, Distributed Coordination Function IFS)**
 - lowest priority, for asynchronous data service

Note: IFS durations are specific to each PHY.
802.11 - CSMA/CA principles

- station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (to increase fairness)
802.11 – CSMA/CA broadcast

The size of the contention window can be adapted (if more collisions, then increase the size)

Packet arrival at MAC

Busy medium not idle (frame, ack etc.)

Elapsed backoff time

Residual backoff time

Note: broadcast is not acknowledged
802.11 - CSMA/CA unicast

Sending unicast packets

- station has to wait for DIFS before sending data
- receiver acknowledges at once (after waiting for SIFS) if the packet was received correctly (CRC)
- automatic retransmission of data packets in case of transmission errors

The ACK is sent right at the end of SIFS (no contention)

See file B1-802-11-Traces.pdf
802.11 – DCF with RTS/CTS

Sending unicast packets

- station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
- acknowledgement via CTS after SIFS by receiver (if ready to receive)
- sender can now send data at once, acknowledgement via ACK
- other stations store medium reservations distributed via RTS and CTS

Diagram:
- Sender
 - DIFS
 - RTS
 - Data
 - NAV (CTS)
 - NAV (RTS)
- Receiver
 - SIFS
 - CTS
 - SIFS
 - ACK
- Other stations
 - NAV
 - Data
 - Contention window

Terms:
- **SIFS**: Short Inter-Frame Space
- **DIFS**: Distributed Inter-Frame Space
- **RTS/CTS**: Request to Send/Clear to Send
- **NAV**: Net Allocation Vector

Note:
- RTS/CTS can be present for some packets and not for others.
Fragmentation mode

- Fragmentation is used in case the size of the packets sent has to be reduced (e.g., to diminish the probability of erroneous frames).
- Each frag_i (except the last one) also contains a duration (as RTS does), which determines the duration of the NAV.
- By this mechanism, fragments are sent in a row.
- In this example, there are only 2 fragments.
802.11 - MAC frame format

Types
- control frames, management frames, data frames

Sequence numbers
- important against duplicated frames due to lost ACKs

Addresses
- receiver, transmitter (physical), BSS identifier, sender (logical)

Miscellaneous
- sending time, checksum, frame control, data

<table>
<thead>
<tr>
<th>bytes</th>
<th>2</th>
<th>2</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>2</th>
<th>6</th>
<th>0-2312</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Control</td>
<td>Duration ID</td>
<td>Address 1</td>
<td>Address 2</td>
<td>Address 3</td>
<td>Sequence Control</td>
<td>Address 4</td>
<td>Data</td>
<td>CRC</td>
<td></td>
</tr>
</tbody>
</table>

version, type, fragmentation, security, ...
detection of duplication
MAC address format

<table>
<thead>
<tr>
<th>scenario</th>
<th>to DS</th>
<th>from DS</th>
<th>address 1</th>
<th>address 2</th>
<th>address 3</th>
<th>address 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ad-hoc network</td>
<td>0</td>
<td>0</td>
<td>DA</td>
<td>SA</td>
<td>BSSID</td>
<td>-</td>
</tr>
<tr>
<td>infrastructure network, from AP</td>
<td>0</td>
<td>1</td>
<td>DA</td>
<td>BSSID</td>
<td>SA</td>
<td>-</td>
</tr>
<tr>
<td>infrastructure network, to AP</td>
<td>1</td>
<td>0</td>
<td>BSSID</td>
<td>SA</td>
<td>DA</td>
<td>-</td>
</tr>
<tr>
<td>infrastructure network, within DS</td>
<td>1</td>
<td>1</td>
<td>RA</td>
<td>TA</td>
<td>DA</td>
<td>SA</td>
</tr>
</tbody>
</table>

DS: Distribution System
AP: Access Point
DA: Destination Address
SA: Source Address
BSSID: Basic Service Set Identifier
 - infrastructure BSS : MAC address of the Access Point
 - ad hoc BSS (IBSS): random number
RA: Receiver Address
TA: Transmitter Address
802.11 - MAC management

Synchronization

- **Purpose**
 - for the physical layer (e.g., maintaining in sync the frequency hop sequence in the case of FHSS)
 - for power management
- **Principle:** beacons with time stamps

Power management

- sleep-mode without missing a message
- periodic sleep, frame buffering, traffic measurements

Association/Reassociation

- integration into a LAN
- roaming, i.e. change networks by changing access points
- scanning, i.e. active search for a network

MIB - Management Information Base

- managing, read, write
The access point transmits the (quasi) periodic beacon signal.
The beacon contains a timestamp and other management information used for power management and roaming.
All other wireless nodes adjust their local timers to the timestamp.
Synchronization (ad-hoc case)

- Each node maintains its own synchronization timer and starts the transmission of a beacon frame after the beacon interval.
- Contention \rightarrow back-off mechanism \rightarrow only 1 beacon wins.
- All other stations adjust their internal clock according to the received beacon and suppress their beacon for the current cycle.
Power management

Idea: switch the transceiver off if not needed

States of a station: sleep and awake

Timing Synchronization Function (TSF)
 - stations wake up at the same time

Infrastructure case
 - Traffic Indication Map (TIM)
 - list of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - list of broadcast/multicast receivers transmitted by AP

Ad-hoc case
 - Ad-hoc Traffic Indication Map (ATIM)
 - announcement of receivers by stations buffering frames
 - more complicated - no central AP
 - collision of ATIMs possible (scalability?)
Power saving (infrastructure case)

Here the access point announces data addressed to the station

access point

medium

station

TIM interval

DTIM interval

D B

busy

busy

busy

busy

T

T

d

D B

T

D

DTIM

awake

TIM

DTIM

p

d

B broadcast/multicast

data transmission to/from the station

p Power Saving poll: I am awake, please send the data
Power saving (ad-hoc case)

- ATIM: Ad hoc Traffic Indication Map (a station announces the list of buffered frames)
- Potential problem: scalability (high number of collisions)
802.11 - Roaming

No or bad connection? Then perform:

Scanning
- scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer

Reassociation Request
- station sends a request to one or several AP(s)

Reassociation Response
- success: AP has answered, station can now participate
- failure: continue scanning

AP accepts Reassociation Request
- signal the new station to the distribution system
- the distribution system updates its data base (i.e., location information)
- typically, the distribution system now informs the old AP so it can release resources