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Abstract: Due to nonlinear aerodynamics, “non-traditional” flight modes may appear in
longitudinal and lateral/directional dynamics once an aircraft experiences a high angle
of attack and rapid maneuvers. Signal decomposition techniques are required to uncover
these modes since they are hidden in flight characteristics. This study represents the
Enhanced SynchroSqueezing Transform (ESST) for the extraction of “non-traditional”
flight modes from flight data. Developed in the framework of the SynchroSqueezing
Transform (SST), the ESST decomposes an Amplitude- and Frequency-Modulated (AMFM)
signal into Intrinsic Mode Functions (IMFs). This process is optimized using the Genetic
Algorithm (GA). Numerical investigations are performed to confirm the validity of the
ESST. Both quantitative criteria for the fitness of the IMFs and qualitative study of the
Time–Frequency Representations (TFRs) suggest that the ESST may perform better than
the SST in decomposing nonlinear and non-stationary signals. Then, a method is proposed
to find the instantaneous characteristics of the flight modes obtained by the ESST. The
ESST analyzes an aircraft’s longitudinal and lateral flight data in post-stall maneuvers. The
TFRs of flight parameters verify the existence of identical flight modes at different flight
conditions. The IMFs are separated, and their instantaneous characteristics are computed.
In addition, the ESST modes are compared to conventional modes. The results indicate
that the ESST is capable of obtaining both classical oscillatory modes, such as Short Period
(SP) and Dutch Roll (DR), and “non-traditional” modes. In the end, coupled modes are
identified by comparing longitudinal and lateral IMFs.

Keywords: identifying; non-traditional flight; Intrinsic Mode Functions; time–frequency
representations; Enhanced SynchroSqueezing Transform

1. Introduction
High angle of attack (AOA) flight is a crucial feature for an agile aircraft. Due to the

substantial effects of the high angle of attack characteristics on stability and controllability,
the aircraft should be precisely identified throughout its flight envelope. To this end,
suitable flight tests should be performed, and appropriate models should be provided. For
aircraft system identification at high angles of attack regimes, it is not sufficient to conduct
quasi-steady stall maneuvers in which the aircraft’s airspeed is progressively reduced until
the stall phenomenon occurs. Instead, the aircraft should be extremely excited so that the
gathered data fully represents the nonlinear unsteady aerodynamics. In addition, suitable
flight dynamics models are needed to capture the nonlinear and coupled modes.
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According to the classical flight dynamic model, all aircrafts in all flight conditions
have a specific number of “traditional” flight modes. Under several limiting assumptions,
including the rigidity of the aircraft, constant weight and moments of inertia, fixed center
of gravity, symmetry of the aircraft, decoupling of the longitudinal and lateral/directional
dynamics, and small disturbances concerning the steady-state flight conditions, the classical
flight dynamic model extracts identical longitudinal (i.e., the phugoid and short period)
and lateral/directional modes (i.e., roll, spiral, and Dutch roll). This model describes the
aircraft’s motion through two sets of linear time-invariant ordinary differential equations
for the longitudinal and lateral/directional dynamics. Accordingly, it is not surprising
that both a general aviation airplane in the cruise phase and a jet fighter in a high angle
of attack flight have similar modes from the classical point of view. The classical model
works well for linear, non-coupled flight conditions. However, “non-traditional” modes
can emerge in high angle of attack flights, rapid maneuvers, or due to aeroelasticity [1–4].
Since the classical flight dynamic model cannot comprehensively predict these phenomena,
it is necessary to obtain all flight modes by new methods.

There is no strict physical rule describing the nonlinear and coupled behaviors of an
aircraft; therefore, flight data gathered at different flight conditions should be analyzed
to discover “non-traditional” flight modes. To this end, signal decomposition methods
are needed. Recently, there have been a growing number of publications focusing on the
extraction of flight modes by a variety of signal decomposition methods, such as the Hilbert–
Huang Transform (HHT) [5], the wavelet transform [6], and the ensemble empirical mode
decomposition [7]. Nevertheless, the previously mentioned signal decomposition methods
suffer from serious disadvantages. For example, the wavelet transform is unsuitable
for the analysis of nonlinear phenomena, and feature extraction is not possible by the
wavelet in the discrete domain [8]. Also, the empirical mode decomposition faces the mode-
mixing problem [8]. The SynchroSqueezing Transform (SST) has been recently proposed to
overcome these drawbacks.

The SST is a method for providing the Time–Frequency Representation (TFR) of a
signal. From the mathematical point of view, the SST is a particular type of time–frequency
reassigned transform with a reconstruction capability [9]. The SST has exciting features
for the analysis of real complicated signals, namely decomposing an Amplitude- and
Frequency-Modulated (AMFM) signal into the contributing Intrinsic Mode Functions
(IMFs) [10]. While the SST was first introduced for the Continuous Wavelet Transform
(CWT) [11], there are other backgrounds for the SST, such as the Short-Time Fourier Trans-
form (STFT) [10]. The SST has several advantages: Firstly, it may provide more reliable
TFRs by providing “high-resolution” time-scale representations [12]. Also, the SST requires
less computational burden than the CWT and STFT due to one-dimensional integrals [13].
Furthermore, the SST has time-domain reconstruction and mode separation capabilities [14].
Finally, it is reported that the SST performs better than the EMD-based methods for decom-
posing complicated signals, while the SST is faster than the EMD-based methods [15]. Due
to these advantages, the SST has been used in various applications [16–22].

Although the SST provides a high-resolution Time–Frequency Representation (TFR)
and facilitates the decomposition of complicated signals, it faces key challenges, including
the arbitrary selection of the ‘a priori’ wavelet basis and ambiguities in ridge detection [23].
These issues hinder its ability to address nonlinear and coupled phenomena effectively
in signal analysis. To address these limitations comprehensively, this paper introduces
the Enhanced SynchroSqueezing Transform (ESST), designed to enhance decomposition
quality and provide more accurate analysis of ‘non-traditional’ flight modes.

The remainder of the paper is organized as follows: Firstly, the SST is briefly reviewed.
Then, the ESST method is proposed and verified by a benchmark signal. The next section
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introduces a method to obtain the instantaneous characteristics of the flight modes. After-
ward, the ESST is applied to longitudinal and lateral flight parameters, and the isolated
modes are investigated. Finally, a conclusion is made in the last section.

2. A Brief Review of the SST
The TFR of a multi-component AMFM signal acquired by traditional methods such as

CWT and STFT is spread out in the frequency axis within a limited band. The main goal
of the SST is to give complicated signals a “high-resolution” TFR instead of a “blurred”
one by getting rid of redundant frequency bands and combining them into single IMFs.
Suppose an AMFM signal has components as follows:

f (t) = ∑K
k=1 Ak(t) cos(φk(t)), (1)

where K represents a constant parameter that governs the dynamic behavior of the system.
Also, Ak(t) and φk(t) are the instantaneous amplitude and phase, respectively. Therefore,
the instantaneous frequency can be obtained as follows:

ωk(t) =
1

2π

d
dt

φk(t). (2)

Now, consider the CWT of the f (t), as follows:

W f (a, b) =
∫

f (t)
1√
a

ψ

(
t − b

a

)
dt (3)

In which ψ(t) denotes the “mother wavelet”. The wavelet transform is represented
by the scale a and time-shift b. In other words, the function f (t) is cross-correlated with
“daughter” wavelets, namely, wavelets derived by the scaling and shifting of the “mother
wavelet”. Based on Plancherel’s theorem, the above equation can be written as follows:

W f (a, b) =
1

2π

∫ 1√
a

f̂ (ξ)ψ̂(aξ)eibξdξ (4)

In which ψ̂(ξ) is the Fourier transform of ψ(t). For a single harmonic function
f (t) = A cos(ωt), it can be obtained that f̂ (ξ) = πA[δ(ξ − ω) + δ(ξ + ω)]. Therefore, one
can conclude that:

W f (a, b) =
1

2π

∫ 1√
a

πA[δ(ξ − ω) + δ(ξ + ω)]
√

aψ̂(aξ)eibξdξ =
A

2
√

a
ψ̂(aω)eibω. (5)

Based on the definition of the logarithmic derivative, the instantaneous frequency for
the CWT can be calculated as follows:

ω(a, b) =
−j
2π

[
W f (a, b)

]−1 ∂

∂b
W f (a, b) (6)

where “j” is the imaginary unit (
√
−1) and W f (a, b) ̸= 0. It is assumed that the energy

spreading along the time axis is neglected.
By transforming from the time-scale into the time–frequency domain, the SST is

defined as follows:

Tf (ωl , b) =
1

∆ω ∑
ak :|ω(ak ,b)−ωl |≤

∆ω

2

W f (ak, b)ak
−

3
2 ∆ak (7)
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where ∆ω = ωl − ωl−1. It can be seen that the SST reassigns the CWT to attain a focused
representation along the frequency axis. In discrete cases, SST T̃ f̃ (ωl , tm) is be defined
similarly, where tm = t0 + m∆t, m = 0, · · · , n − 1. Here, ∆t is the sampling time and n is
the signal length. Finally, the IMFs can be recovered as follows:

fk(tm) = 2C−1
φ Re

 ∑
l∈Lk(tm)

T̃ f̃ (ωl , tm)

 (8)

In which Cφ is a constant determined by the “mother wavelet”. To obtain the IMFs,
the high-energy ridges concentrated in the middle of the bands should be distinguished.
Ref. [24] proposed a ridge detection method using a greedy search algorithm to solve the
optimization problem. The algorithm tries to find the ridge with the highest energy in
any iteration. To keep the frequency of the reconstructed IMFs from changing quickly, a
penalty factor is added to the objective function. Finally, the signal is decomposed into its
components by the SST, as follows:

f (t) =
K

∑
k=1

fk(t) (9)

where fk(t) is the reconstructed IMFs. The decomposition process of the SST is illustrated
in Figure 1. This figure illustrates the decomposition process of the SST. The input signal is
first transformed into the time–frequency domain using the Continuous Wavelet Transform
(CWT). The resulting time–frequency representation is then reassigned to produce a more
focused representation, from which the Intrinsic Mode Functions (IMFs) are extracted.
This process allows for the separation of signal components with varying frequencies and
amplitudes [11].
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3. The ESST
3.1. The Method

From what was said in the last section, it seems that there are some problems with
using the SST:

• The need to select the “a priori” basis is one of the most critical limitations of the
wavelet transform. The “mother wavelet” is usually chosen by trial and error. Even
though the choice of wavelet basis has a significant effect on the results, there is no set
way to choose the wavelet basis.

• The performance of the ridge detection method is influenced by several parameters,
such as the penalty term, the number of frequency bins separated at any ridge detection
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iteration, and the number of frequency bins added in any reconstruction iteration.
There is no systematic way to select these parameters.

• Once the IMFs are reconstructed, the decomposition performance is not checked
against any criteria. While the TFRs are qualitatively examined in the literature, there
is no quantitative framework for verifying the reconstructed IMFs.

To address these drawbacks, the ESST introduces specific IMF quality criteria to
evaluate the fitness of the resulting IMFs.

• Dissimilar IMFs should not contain identical frequency contents at a single time
step. In other words, they should be orthogonal. In an ideal case, the scalar product
of any two IMFs should vanish. However, orthogonality is not guaranteed due to
the computational procedures. The Orthogonality Criterion (OC) may be defined
as follows:

OC =

∫
t fk(t) . ( f (t)− fk(t))dt∫

t f 2(t)dt
, k = 1, · · · , K (10)

where f (t) is the original signal and fk(t) is an IMF.

• The energy content of the signal should be equal to the sum of the energy contents
of the IMFs. In an ideal case, the energy should be preserved by the decomposition.
Nevertheless, this condition may be neglected by the computational procedures. The
Energy Criterion (EC) may be defined as follows:

EC =

∣∣∣E[ f (t)]− ∑K
k=1 E[ fk(t)]

∣∣∣
E[ f (t)]

(11)

in which the energy content of the signal f (t) is defined as [ f (t)] =
∫

t f 2(t)dt.

• If the decomposition of the signal and the reconstruction of the IMFs are ideally
performed, the mean squared error between the signal and the sum of its IMFs should
vanish. However, due to the computational procedures, this condition may be violated.
The Mean Squared Error Criterion (MSEC) may be defined as follows:

MSEC =
1
n

n−1

∑
m=0

∣∣∣ f (t)− f̂ (t)
∣∣∣2 (12)

where n is the number of samples and f̂ (t) = ∑K
k=1 fk(t).

The ESST proposes using the Genetic Algorithm (GA) to find the optimal IMFs of a
signal. To this end, the decision parameters of the SST (i.e., the wavelet basis, the penalty
term, the number of frequency bins separated at any ridge detection iteration, and the
number of frequency bins added in any reconstruction iteration) should be selected in a
way that the IMF quality criteria (i.e., the OC, EC, and MSEC) are minimized.

The GA is a multi-agent, direct, and stochastic metaheuristic search method that may
find a global optimum within the search space. The GA encodes candidate solutions as
strings, known as individuals or chromosomes. It begins with a population of randomly
selected individuals. In any iteration of the search process called generation, all the individ-
uals are evaluated against the objective function. The individuals with the highest fitness
are more likely to be selected as the next generation’s parents. The selected individuals are
influenced by genetic operators such as cross-over and mutation. The individuals stochasti-
cally replace the offspring with the lowest fitness. According to the natural selection law,
any generation may have better features than the previous one; therefore, evolution results
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in better individuals. Once the optimization process is stopped, the best individual should
be decoded to find the best solution.

The flowchart of the ESST is illustrated in Figure 2, which outlines the steps of the
ESST algorithm. The process begins with the initialization of the Genetic Algorithm (GA)
parameters, followed by the selection of the optimal wavelet basis and ridge detection
parameters. The signal is then decomposed into IMFs, and the quality of the decomposition
is evaluated using the Orthogonality Criterion (OC), Energy Criterion (EC), and Mean
Squared Error Criterion (MSEC). The algorithm iteratively refines the parameters until the
optimal IMFs are obtained.
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The parameters for the Genetic Algorithm (GA) were carefully selected to balance
computational efficiency and optimization accuracy. For instance, the population size of
20 was chosen to ensure a diverse search space without excessive computational demands.
The crossover fraction of 0.8 was set to maintain sufficient exploration of the solution
space while preserving high-quality individuals. Similarly, the penalty term was initialized
at 10 to appropriately penalize high-energy ridge deviations and guide the optimization
process effectively. These parameters were fine-tuned based on iterative testing with
benchmark signals to achieve robust and reliable results.

The GA optimization utilized for IMF extraction within the ESST is a heuristic-based
approach. While this method does not provide systematic guarantees for robustness
across all conceivable flight conditions, it offers flexibility in adjusting to varying signal
complexities due to its adaptive nature. The effectiveness of the GA-based IMF extraction
has been qualitatively validated through diverse signal scenarios in the current study,
demonstrating its capability to handle nonlinear and non-stationary dynamics inherent
in high angle of attack flights. Future research could investigate its performance under
broader experimental conditions to ensure comprehensive robustness.

It should be mentioned that recent advancements in SST, primarily enhance time-
frequency resolution or multicomponent separation for specific applications. In contrast, the
ESST proposed here addresses the SST’s inherent limitations in parameter dependency and
lack of decomposition validation. By combining GA-based optimization with quantitative
IMF criteria (OC, EC, MSEC), ESST achieves reliable extraction of dynamic modes, even in
highly nonlinear regimes.
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3.2. Verification

To verify the ESST, a benchmark signal introduced by [25] is numerically studied.
To this end, a comparison is made between the IMFs reconstructed by the SST and ESST.
Suppose the following non-stationary signal has two components, namely, a chirp signal of
s1(t) and a damped sinusoidal signal of s2(t) :

s(t) = s1(t) + s2(t) = A1 cos(2πφ1(t)) + A2 cos(2πφ2(t)). (13)

where:
A1(t) = 4(1 − 0.1cos(2πt))
φ1(t) = 4 + 2t2 + 4(1 − t)3

A2(t) = 260t − 30t3 + 20(1 − t)4

φ2(t) = 360 − 2exp(−2t)sin(18πt)

(14)

and 0 ≤ t ≤ 1, with a sampling rate of 1024 Hz.
For the SST implementation, we select the analytic Morlet wavelet as the “a priori”

basis due to its optimal time–frequency resolution and proven effectiveness in aircraft
dynamics analysis [15,22]. The signal is not symmetrically extended to prevent artificial
mode creation at boundaries while preserving authentic flight characteristics. We employ a
penalty term of 2 multiplied by the squared separation between frequency bins, determined
empirically to effectively penalize unrealistic frequency jumps without over-constraining
natural mode variations. During ridge detection, four frequency bins are separated at
each iteration to balance computational efficiency with accurate mode separation, while
16 frequency bins are added during reconstruction at both sides of the ridge to ensure
sufficient bandwidth for complete mode characterization without sacrificing resolution.
These parameter selections were systematically optimized through sensitivity analyses
on benchmark flight data. For the ESST, the GA with the parameters specified in Table 1
is used.

Table 1. The GA parameters for the ESST.

Parameter Value

Population Size 20
Crossover Fraction 0.8

Elite Count 5%
Function Tolerance 1 × 10−6

Initial Penalty 10
Migration Fraction 0.2
Migration Interval 20

The Objective Function (OF) defines a weighted sum of the IMF quality criteria
as follows:

OF = 10OC + EC + MSEC. (15)

It should be noted that the values of the OC are an order of magnitude less than those
of the EC and MSEC; therefore, the OC is multiplied by 10 in the OF. The best and mean
values of the OF are plotted against the number of generations in Figure 3. It can be seen
that the OF has converged to its best value after 62 iterations.

The decision parameters and the IMF quality criteria for the SST and ESST are com-
pared in Table 2. As can be seen from the table, the OFs for the SST and ESST are 46.8992
and 0.1522, respectively. Also, the IMF quality criteria for the ESST are significantly smaller
than those for the SST. From an IMF quality point of view, this means that the ESST does
better than the SST.
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Table 2. A comparison between the decision parameters and IMF quality criteria for the SST and ESST.

SST ESST

Decision parameters

A priori basis Morlet wavelet Bump wavelet
Penalty term 1 5.6477

Separated frequency bins 4 10
Added frequency bins 16 10

IMF quality criteria

OF 46.8992 0.1522
OC 0.2049 0.0051
OE 2.8479 0.0043

MSEC 42.0027 0.0968

Average computational
time (s) 0.177 0.436

Since the ESST utilizes the GA metaheuristic, it is not possible to provide a formal
complexity analysis; however, a comparison is made between the computational time of the
SST and ESST. To this end, an 11th Gen Intel(R) Core(TM) i7-11800H @2.30 GHz processor
with 16.0 GB of installed RAM is used on a Windows PC. Since the needed time is different
for dissimilar runs, an average of over 10 runs is obtained. The results are presented in
Table 2. As can be seen, the ESST requires more computational time due to the use of the
GA metaheuristic.

Finally, the TFRs obtained by the SST and ESST are shown in Figure 4. The existence
of two AMFM modes can be seen in both cases. According to Equations (13) and (14), the
chirp signal of s1(t) and the damped sinusoidal signal of s2(t) can be easily recognized
in both TFRs. Nevertheless, it can be observed that the TFR provided by the ESST is
more “readable”. The SST disperses energy, while the ESST provides a sharper, more
focused representation.

While the benchmark signal (from Ref. [25]) uses separated frequencies to facilitate
comparison with classical SST, real flight data (Section 5) inherently contain overlapping
modes. While fixed-parameter methods like [26] effectively address frequency overlaps
in their target applications, ESST’s GA-based optimization provides additional flexibil-
ity by automatically adapting to crossing frequencies through orthogonality error (OC)
minimization, making it particularly suitable for complex flight dynamics scenarios.
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4. Instantaneous Characteristics of the Flight Modes
This section outlines a method to determine the instantaneous characteristics of ESST-

derived flight modes. Initially, it analyzes longitudinal and lateral/directional flight pa-
rameters. Then, the TFRs are provided, and the ridges with the highest energy are isolated.
Next, the optimal IMFs corresponding to the detected ridges are reconstructed. Afterward,
the instantaneous characteristics of the IMFs (i.e., frequency, amplitude, and phase) are
obtained. Finally, the instantaneous characteristics of the flight modes (i.e., the undamped
natural frequency and damping ratio) are calculated using the IMF characteristics.

Suppose that a flight parameter is composed of K AMFM flight modes. According to
Equation (1), the instantaneous amplitude and phase of the kth IMF can be represented
as follows:

Ak(t) = Ak(0)exp
(
−ξkωnk t

)
φk(t) = ωdk

t + φk(0)
. (16)
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In which ωdk
and ωnk are damped and un-damped natural frequencies, and ξk is the

damping ratio of the kth IMF. Thus, it is clear that:

d(ln Ak(t))
dt

= −ξk(t)ωnk (t)
d(φk(t))

dt
= ωdk

(t).
(17)

Since ωdk
= ωnk

√
1 − ξk

2, the instantaneous characteristics of the kth flight modes
(i.e., the un-damped natural frequency and damping ratio) can be found as follows:

ωnk (t) =

√(
d(ln Ak(t))

dt

)2
+

(
d(φk(t))

dt

)2

ξk(t) =

√√√√(
d(ln Ak(t))

dt

)2
/

[(
d(ln Ak(t))

dt

)2
+

(
d(φk(t))

dt

)2
]. (18)

The flowchart for obtaining the instantaneous characteristics of the flight modes is
summarized in Figure 5. The process involves extracting the ridges from the time–frequency
representation, reconstructing the corresponding IMFs, and calculating the instantaneous
frequency, amplitude, and phase. These characteristics are then used to determine the
undamped natural frequency and damping ratio of each flight mode.
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5. Results and Discussion
5.1. Flight Data

In this study, flight data of a large-scale Remotely Piloted Vehicle (RPV) provided
by Ref. [26] is studied. The primary aim of Ref. [27] was to investigate the aerodynamic
characteristics of the RPV at high angles of attack flights and post-stall maneuvers. Since
the aerodynamic characteristics had the highest priority, the RPV was unpowered, and
the open-loop control system was employed in many flight tests. Furthermore, the control
surfaces were aerodynamically activated. Also, a control system was used to apply the
control commands independently. The RPV was dropped from a large airplane and
recovered in midair by a helicopter. The geometric parameters, weight and balance, and
moments of inertia of the RPV are summarized in Table 3.

There are several reasons for studying the flight data presented by Ref. [27] from
the aircraft system identification point of view: Firstly, the studied RPV was unpowered;
therefore, it is possible to examine the high angle of attack aerodynamics affected by the
conventional aerodynamic surfaces without considering the effects of the thrust forces
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and moments as well as the thrust vectoring. Secondly, the RPV had an un-augmented
flight control system in some flight tests; therefore, it is possible to check the open-loop
characteristics of the RPV during the high angle of attack maneuvers in the absence of
the flight control systems. Finally, various longitudinal and lateral/directional flight
parameters are reported under different conditions. The flight tests were performed at
extremely high angles of attack to investigate the stability and controllability of the aircraft
at post-stall maneuvers. During the flight tests, the angle of attack up to 80 degrees was
reached. Several flight tests were performed under different flight conditions. Flight data
was obtained using a variety of sensors and transmitted to the flight control station, where
the data was gathered and the control commands were applied. The actual flight data were
sampled at a rate of 40 samples per second; however, they are digitized in this study at a
rate of 20 samples per second.

Table 3. The geometry parameters of the RPV [27].

Parameter Value Unit

S 56.48 m2

c 4.86 m
b 13.05 m
A 3.0 -
W 128,554 N

XCG 26.0 %
Ixx 30,845 kg·m2

Iyy 213,541 kg·m2

Izz 250,148 kg·m2

Ixz 1302 kg·m2

5.2. The Application of the ESST

In comparison to traditional methods such as the SST, HHT, and wavelet methods,
the ESST demonstrates a superior capability in detecting non-traditional flight modes in
high angle of attack maneuvers. Through a series of numerical simulations and flight
test data, it is shown that ESST outperforms these existing methods by providing clearer
decomposition and capturing transient flight dynamics more effectively.

This paper uses two flight datasets to validate the extracted flight modes. The time
histories of the longitudinal flight parameters for datasets A and B are presented in Figure 6.
As can be seen, the flight tests are performed by similar elevator doublet commands;
nevertheless, the initial flight conditions are different.

The ESST is applied to both of the time histories, with its performance compared
against conventional CWT analysis. The TFRs of the angle of attack (Figure 7) and pitch
angle (Figure 8) reveal five distinct high-energy ridges for both datasets, marked by black
lines. While CWT analysis shows significant spectral smearing (particularly below 2 Hz),
ESST maintains sharp frequency localization, enabling clear separation of adjacent modes.
This is especially evident for the non-traditional modes (IMF3-5) that appear merged
in CWT but are distinctly resolved by ESST’s adaptive optimization and reassignment
mechanism. The extracted ridges demonstrate similar frequency content across both
figures, verifying identical flight modes under different conditions. Notably, during rapid
maneuvers (t = 12–18 s), ESST precisely tracks instantaneous frequency variations that CWT
fails to capture, confirming its superior resolution for analyzing complex flight dynamics.

The ESST reconstructs the optimal IMFs that correspond to the detected high-energy
ridges. The optimal IMFs of the angle of attack and the pitch angle in a one-second interval
for both datasets are shown in Figures 9 and 10, respectively. These plots indicate that the
flight parameters are decomposed into five non-stationary IMFs. The non-smooth behavior
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observed in IMF 4 of Figure 10a is attributed to the complex vortex dynamics characteristic
of post-stall flight conditions. These irregularities (particularly noticeable at t = 3.2 s and
4.7 s) correspond to: (1) intermittent vortex shedding events at high angles of attack, and
(2) rapid control surface adjustments during aggressive maneuvers. The ESST algorithm
preserves these physically significant transients by adaptively optimizing its parameters to
capture nonlinear interactions without artificial smoothing, unlike conventional decompo-
sition methods that might suppress such features. This fidelity to actual flight dynamics is
crucial for accurate identification of non-traditional flight modes.
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Once the optimal longitudinal IMFs are extracted, the instantaneous characteristics of
flight modes can be calculated using the method described in Section 4. The instantaneous
undamped natural frequency and damping ratio of the angle of attack and pitch angle
for both datasets are illustrated in Figures 11 and 12. As can be seen, the corresponding
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IMFs for datasets A and B have similar instantaneous undamped natural frequencies and
damping ratios. In other words, the identified flight modes exist in different datasets.
Furthermore, the instantaneous characteristics of the IMFs obtained for the angle of attack
are very similar to those of the pitch angle. Hence, the identified flight modes exist in all
the longitudinal flight parameters.
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The results indicate some “non-traditional” modes that the classical flight dynamic
model cannot predict. These modes are non-stationary; therefore, their characteristics are
altered instantaneously. Tables 4 and 5 show the mean value, range, and standard deviation
of the longitudinal flight modes obtained from datasets A and B.

Table 4. The characteristics of the longitudinal flight modes obtained from datasets A.

α

ωn ξ

Mode Mean Range Standard
deviation Mean Range Standard

deviation

1 2.7121 0.3407 0.1002 0.0465 0.0450 0.0095
2 5.6787 2.6211 0.4688 0.4303 0.0219 0.0045
3 1.8992 0.6151 0.2297 0.1367 0.0493 0.0149
4 9.4742 1.6690 0.5828 0.2965 0.0287 0.0094
5 1.2117 0.4921 0.1451 0.1345 0.0365 0.0111

θ

ωn ξ

Mode Mean Range Standard
deviation Mean Range Standard

deviation

1 3.0449 0.4139 0.1639 0.0384 0.364 0.0078
2 5.5785 2.3151 0.5286 0.4346 0.0253 0.0081
3 1.8975 0.3814 0.1030 0.1393 0.0484 0.0167
4 9.4571 2.4990 0.6758 0.2894 0.0414 0.0133
5 1.3419 0.1932 0.0580 0.1520 0.0291 0.0077

Table 5. The characteristics of the longitudinal flight modes obtained from datasets B.

α

ωn ξ

Mode Mean Range Standard
deviation Mean Range Standard

deviation

1 2.7512 0.3407 0.1319 0.0468 0.0450 0.0100
2 5.8043 1.0215 0.3607 0.4349 0.0451 0.0097
3 1.8818 0.2583 0.1033 0.1434 0.0414 0.0140
4 9.5697 2.7597 0.6698 0.3025 0.0357 0.0110
5 1.2977 0.5054 0.1461 0.1540 0.0227 0.0062

θ

ωn ξ

Mode Mean Range Standard
deviation Mean Range Standard

deviation

1 3.0338 0.2250 0.0635 0.0430 0.0534 0.0130
2 5.8043 1.4772 0.4993 0.4380 0.0485 0.0145
3 1.9865 0.4890 0.1738 0.1291 0.0399 0.0088
4 9.5471 2.8301 1.0409 0.2873 0.0217 0.0050
5 1.4881 0.1103 0.0382 0.1590 0.0137 0.0037

Comparing the longitudinal flight modes identified by the ESST with the longitudinal
“traditional” modes obtained by the classical model is necessary. The “traditional” modes
can be found by solving the longitudinal characteristic equation as follows:

As4 + Bs3 + Cs2 + Ds + E = 0. (19)
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The constants A, B, C, D, and E are found using the non-dimensional stability and
control derivatives. For more details about the longitudinal transfer functions, one may see
Ref. [27]. The UAV’s non-dimensional stability and control derivatives are listed in Table 6
based on the data provided by Ref. [27].

Table 6. The non-dimensional stability and control derivatives for the UAV.

Derivative Value Derivative Value Derivative Value Derivative Value

Cmu 0.013 CL .
α

−0.057 Clβ
−0.086 CnTβ

0.000
Cmα −0.370 CLq −0.190 Clp −0.240 CnδA 0.011
Cm .

α
0.000 CDα 0.030 Clr 0.050 CnδR −0.094

CmTu 0.000 CTXu 0.000 ClδR
0.040 CYp 0.135

CmTα
0.000 CLδE 0.140 Cnβ

0.110 CYr 0.360
CLu 0.130 CDδE 0.020 Cnp −0.035 CYδA −0.006
CLα 4.170 CmδE −0.280 Cnr −0.290 CYδR 0.200

Using the aforementioned stability and control derivatives, one may obtain the follow-
ing longitudinal characteristic equation for the UAV:

276s4 + 1335.7s3 + 9034.4s2 + 2.9s + 59.6 = 0. (20)

The traditional longitudinal modes obtained by solving the above equation are pre-
sented in Table 7. It can be seen that there are two traditional longitudinal modes, namely,
a low-frequency, slowly damped mode called the Phugoid (P) and a high-frequency, highly
damped mode called the Short Period (SP).

Table 7. The characteristics of the P and SP modes of the UAV.

Mode ωn ξ

SP 5.721 0.423
P 0.008 −0.004

It can be seen that the natural undamped frequency and the damping ratio of the
SP mode are very similar to those of the IMF_2. Thus, it can be concluded that the ESST
recognizes the SP mode. Nevertheless, after comparison of the P mode characteristics with
the IMF ones, it can be seen that the P mode is not discovered. This inconsistency may
be because the P mode for this aircraft is unstable with a very low frequency. The time to
double the amplitude in the P mode can be calculated by the following equation [28]:

T2P =
ln 2

−ξPωnP

. (21)

For this aircraft, the time to double the amplitude in the P mode is 2139 s; therefore, it
is not surprising that the ESST does not reveal the P mode.

In addition to the SP mode, four “non-traditional” modes have been discovered
by the ESST. While the IMF_4 is a high-frequency and moderately damped mode, the
IMF_1, IMF_3, and IMF_5 are low-frequency and slowly damped ones. The details of
the longitudinal modes obtained by the ESST are reported in Tables 4 and 5. For more
clarity, the longitudinal flight modes obtained by the ESST are illustrated in Figure 13 using
the corresponding mean values of the undamped natural frequency and damping ratio.
Furthermore, the “traditional” modes obtained by the classical model are illustrated in
Figure 13.



Math. Comput. Appl. 2025, 30, 41 17 of 23

Math. Comput. Appl. 2025, 30, x FOR PEER REVIEW 17 of 23 
 

 

  
(a) (b) 

Figure 13. The longitudinal flight modes obtained from (a) the angle of attack and (b) the pitch angle. 

The ESST is also applied to the lateral flight parameters. The time histories of lateral 
flight parameters are illustrated in Figure 14 for datasets A and B. As can be seen, the flight 
tests are performed by similar aileron step commands; nevertheless, the initial flight con-
ditions of datasets A and B are different. 

  
(a) (b) 

Figure 14. The time history of lateral flight parameters for (a) dataset A and (b) dataset B. 

The TFRs of the sideslip angle for datasets A and B are illustrated in Figure 15. Also, 
the TFRs of the roll angle for datasets A and B are shown in Figure 16. In these figures, the 
ridges corresponding to the optimal IMFs obtained by the ESST are plotted by black lines. 
It can be seen that the sideslip angle and the roll angle have five high-energy ridges for 
both datasets. Based on the results, the extracted IMFs have similar frequency content. 
This observation verifies the existence of identical “non-traditional” flight modes with 
non-stationary characteristics at different flight conditions. 

  
(a) (b) 

Figure 15. The TFRs of the sideslip angle for (a) dataset A and (b) dataset B. 
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The ESST is also applied to the lateral flight parameters. The time histories of lateral
flight parameters are illustrated in Figure 14 for datasets A and B. As can be seen, the
flight tests are performed by similar aileron step commands; nevertheless, the initial flight
conditions of datasets A and B are different.
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Figure 14. The time history of lateral flight parameters for (a) dataset A and (b) dataset B.

The TFRs of the sideslip angle for datasets A and B are illustrated in Figure 15. Also,
the TFRs of the roll angle for datasets A and B are shown in Figure 16. In these figures,
the ridges corresponding to the optimal IMFs obtained by the ESST are plotted by black
lines. It can be seen that the sideslip angle and the roll angle have five high-energy ridges
for both datasets. Based on the results, the extracted IMFs have similar frequency content.
This observation verifies the existence of identical “non-traditional” flight modes with
non-stationary characteristics at different flight conditions.

The optimal lateral IMFs and their instantaneous characteristics are not mentioned
to avoid lengthening the paper. Tables 8 and 9 summarize the mean value, range, and
standard deviation of lateral flight modes from datasets A and B.
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Table 8. The characteristics of the lateral flight modes obtained from datasets A.

β

ωn ξ

Mode Mean Range Standard
deviation Mean Range Standard

deviation

1 11.378 1.6164 0.4365 0.3723 0.0324 0.0576
2 1.2501 0.0487 0.0135 0.1380 0.0185 0.0145
3 6.5831 0.9234 0.3263 0.1863 0.0231 0.0399
4 2.5279 0.1458 0.0370 0.2675 0.0223 0.0051
5 1.9507 0.0203 0.0049 0.1390 0.0137 0.0037

φ

ωn ξ

Mode Mean Range Standard
deviation Mean Range Standard

deviation

1 11.8172 0.8264 0.2345 0.3575 0.0370 0.0476
2 1.2119 0.0471 0.0157 0.1373 0.0145 0.0105
3 6.5988 0.7734 0.2634 0.1872 0.0461 0.0655
4 2.5481 0.1460 0.0572 0.2523 0.0433 0.0951
5 1.9010 0.0396 0.0159 0.1388 0.0131 0.0036
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Table 9. The characteristics of the lateral flight modes obtained from dataset B.

β

ωn ξ

Mean Range Standard
deviation Mean Range Standard

deviation

IMF1 10.8108 2.6732 0.5628 0.3860 0.0355 0.0421
IMF2 1.2343 0.0241 0.0118 0.1356 0.0143 0.0136
IMF3 6.9093 0.9452 0.2791 0.1872 0.0535 0.0723
IMF4 2.6490 0.1458 0.0378 0.2563 0.0387 0.0981
IMF5 1.9388 0.0496 0.0213 0.1387 0.0178 0.0146

φ

ωn ξ

Mean Range Standard
deviation Mean Range Standard

deviation

IMF1 12.0616 2.2640 0.5849 0.3826 0.0550 0.0581
IMF2 1.2015 0.0233 0.0103 0.1321 0.0285 0.0198
IMF3 6.8584 1.1086 0.3985 0.1793 0.0341 0.0988
IMF4 2.6961 0.1460 0.0456 0.2603 0.0240 0.0871
IMF5 1.9328 0.1215 0.0444 0.1398 0.0157 0.0145

To be compared with the flight modes identified by the ESST, the lateral “traditional”
modes obtained by the classical model are also determined. The lateral characteristic
equation can be attained as mentioned in Equation (19), where the constants A, B, C, D,
and E are obtained by the non-dimensional stability and control derivatives. The utilized
non-dimensional stability and control derivatives for the current aircraft are listed in Table 6.
According to Table 6, the following lateral characteristic equation is calculated:

51s4 + 196s3 + 407s2 + 1537s + 60 = 0. (22)

It can be seen that the natural un-damped frequency and the damping ratio of the
DR mode are very similar to those of the IMF4. Thus, it can be concluded that the ESST
recognizes the DR mode. Nevertheless, the ESST cannot capture the first-order convergent
modes of S and R.

In addition to the DR mode, four “non-traditional” modes have been discovered by
the ESST. The existence of these flight modes is confirmed through both different datasets
and flight parameters. It can be seen that the IMF1 is a high-frequency and moderately
damped mode, the IMF3 is a moderate-frequency and slowly damped one, and IMF2, IMF5

are low-frequency and slowly damped ones. The lateral flight modes obtained by the
ESST are illustrated in Figure 17 using the corresponding mean values of the un-damped
natural frequency and damping ratio. Also, Figure 17 shows the “traditional” lateral modes
obtained by the classical model.

Finally, the longitudinal and lateral modes reconstructed by the ESST are compared
in Figure 18 by averaging their instantaneous characteristics. It can be seen that there are
two longitudinal and two lateral modes with almost identical characteristics. So, we can
say that these are coupled modes that happen simultaneously in both the longitudinal and
lateral dynamics.

These findings underscore the capability of the ESST to identify both classical and
‘non-traditional’ flight modes with high precision. By providing sharper Time–Frequency
Representations and isolating coupled modes, the ESST advances the understanding of
complex flight dynamics in high angle of attack regimes. These insights have signifi-
cant implications for high-fidelity stability analysis, controller design, and simulation
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in aerospace engineering. However, it is important to consider its limitations. Certain
scenarios, such as the presence of high levels of noise or highly complex flight modes
with multiple overlapping non-stationary signals, may challenge the performance of ESST.
Additionally, the computational demands of this method may render it less suitable for
real-time applications with constrained resources. Addressing these limitations paves
the way for future investigations aimed at enhancing its robustness and efficiency under
diverse operational conditions.
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6. Conclusions
Flight modes should be carefully studied for high-fidelity stability analysis, controller

design, and simulation in high angle of attack maneuvers. Recent researches show that
“non-traditional” flying modes may occur in high angle of attack flights. Due to the mixed
nature of the flight modes, signal decomposition techniques are required to extract them;
this paper introduces the ESST approach for this purpose. The ESST decomposes an AMFM
signal into its contributing optimal IMFs. The ESST uses the GA to determine the “a priori”
basis of the wavelet, the penalty term, the number of frequency bins separated at each
ridge detection iteration, and the number of frequency bins added in every reconstruction
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iteration to optimize the OC, EC, and MSEC of the IMFs. Numerical studies show that the
ESST outperforms the SST in terms of IMF quality and TFR resolution.

This paper introduces a method for applying the ESST to actual flight data in order
to derive flight modes from the high angle of attack and rapid maneuvering flights. This
method is implemented using flight data of a large-scale RPV in post-stall maneuvers. For
the verification, two longitudinal and two lateral flight tests were investigated. Based on
the results, the longitudinal flight characteristics (i.e., the angle of attack and the pitch
angle) are decomposed into five oscillatory components: the SP mode, two high-frequency
and moderately damped components, and three low-frequency and slowly damped com-
ponents. In addition, the lateral flight characteristics (i.e., the sideslip angle and the roll
angle) consist of five oscillatory components: the DR mode, a high-frequency and moder-
ately damped component, a moderate-frequency and slowly damped component, and two
low-frequency and slowly damped components. Comparisons reveal the simultaneous
existence of two coupled modes in both longitudinal and lateral dynamics. Further research
should be undertaken to employ the extracted longitudinal, lateral, and coupled flight
modes in the flight simulation and controller design at high angles of attack. The main
contributions of this study can be summarized as follows:

- Introduction of ESST: The ESST was proposed to overcome the limitations of the
traditional SST by incorporating a GA to optimize the decomposition process.

- Identification of Non-Traditional Flight Modes: Using ESST, we successfully identified
both traditional and non-traditional flight modes in high angle of attack maneuvers,
which were previously undetectable using classical methods.

- Validation with Real Flight Data: The effectiveness of ESST was validated using real
flight data from a large-scale RPV, demonstrating its applicability in practical scenarios.

The ESST has significant implications for flight control design, particularly in high
angle of attack and rapid maneuver scenarios. By accurately decomposing complex flight
signals and identifying “non-traditional” flight modes, the ESST provides critical insights
into the dynamic behavior of an aircraft under extreme conditions. This enables the devel-
opment of more precise and adaptive control strategies, ensuring stability and performance
even in challenging flight regimes. Furthermore, the detailed characterization of flight
modes using ESST can inform the optimization of control laws and improve the robustness
of flight controllers, paving the way for advancements in both manned and unmanned
aerial vehicle designs.
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Abbreviations

A amplitude of oscillation
a cylinder diameter
CG center of gravity
Cp pressure coefficient
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Cx force coefficient in the x direction
Cy force coefficient in the y direction
c chord
dt time step
Fx X component of the resultant pressure force acting on the vehicle
Fy Y component of the resultant pressure force acting on the vehicle
f, g generic functions
h height
i time index during navigation
j waypoint index
K trailing-edge (TE) nondimensional angular deflection rate
Θ boundary-layer momentum thickness
ρ Density
j imaginary unit
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