Turbulent flows in a spiral double-pipe heat exchanger
Optimal performance conditions using an enhanced genetic algorithm

Zhe Tian
School of Engineering, Ocean University of China, Qingdao, China

Ali Abdollahi and Mahmoud Shariati
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Atefeh Amindoust
Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Hossein Arasteh
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

Arash Karimipour
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran, and

Marjan Goodarzi and Quang-Vu Bach
Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

Purpose – This paper aims to study the fluid flow and heat transfer through a spiral double-pipe heat exchanger. Nowadays using spiral double-pipe heat exchangers has become popular in different industrial segments due to its complex and spiral structure, which causes an enhancement in heat transfer.

Design/methodology/approach – In these heat exchangers, by converting the fluid motion to the secondary motion, the heat transfer coefficient is greater than that of the straight double-pipe heat exchangers and cause increased heat transfer between fluids.

Findings – The present study, by using the Fluent software and nanofluid heat transfer simulation in a spiral double-tube heat exchanger, investigates the effects of operating parameters including fluid inlet velocity, volume fraction of nanoparticles, type of nanoparticles and fluid inlet temperature on heat transfer efficiency.

Originality/value – After presenting the results derived from the fluid numerical simulation and finding the optimal performance conditions using a genetic algorithm, it was found that water–Al₂O₃ and
water–SiO₂ nanofluids are the best choices for the Reynolds numbers ranging from 10,551 to 17,220 and 17,220 to 31,910, respectively.

Keywords Nano fluid, Optimization, Turbulent flow, Genetic algorithm, Heat exchanger

Paper type Research paper

Nomenclature

- C_p = Specific heat transfer [J/kg.K]
- f = Friction coefficient
- k = Thermal conductivity [W/m.K]
- Nu = Nusselt number
- Re = Reynolds number
- U = Velocity in x-direction [m/s]
- v = Velocity in y-direction [m/s]
- w = Velocity in z-direction [m/s]

Greek symbols

- θ = Kinematic viscosity [m²/s]
- μ = Dynamic viscosity [kg/m.s]
- ρ = Fluid density [kg/m³]; and
- ϕ = Nanoparticles volume fraction

Subscripts

- f = Fluid
- nf = Nanofluid
- s = Solid

1. **Introduction**

Today, heat exchangers are playing a vital role in the industry with a wide application in refineries, chemical and food industries, air conditioning systems, cryogenic processes, waste heat recovery, etc. This equipment creates a high ratio of surface area to volume unit. In some studies, pipes are spiral (in the form of a spring), which create a centrifugal force in them (Chingulpitak and Wongwises, 2011; Zhao et al., 2011). The secondary flow increases the heat transfer rate by decreasing the temperature differences. Therefore, in the heat transfer phenomenon, another displacement perpendicular to the flow is generated, which does not exist in the common devices. **Figure 1** shows the schematic view of the spiral pipe structure and the secondary flow performance have been shown.

![Figure 1](image-url)
Lots of studies have been done around the hydrodynamic and thermal properties of spiral pipes (Berger et al., 1983; Naphon and Wongwises, 2006; Dravid et al., 1971). Kurnia et al. (2011a) simulated the spiral pipes with a non-circular cross-sectional shape. These researchers, in another study, examined the heat transfer performance in cooling channels with different designs (Kurnia et al., 2011b). In their study, the channel designs were parallel, wave, snake, fin diagonal and spiral tubes, and their research showed that spiral tubes have larger heat transfer. Naphon and Wongwises (2002) investigated the exclusive positive effects of heat transfer and fluid flow in horizontal pipes. In addition, the increase in heat transfer in the spiral coil is greater than the straight pipe. They investigated the properties of a spiral coil flow through the experimental and numerical methods.

Pawar (2013) made experimental studies concerned steady and unsteady supposed problems. Paisarn and Jamnean (2006) presented an article in the bending pipes. They showed that heat pipes worked better by some supposed heat transfer techniques for a specific heat transfer. Jang Yang (2012) investigated the spiral heat exchanger for different values of Re. In this experiment, the effect of Darcy friction and conductive heat transfer coefficient were measured from radial flow, which radial flow and screw flow were correlated to air and water, respectively. Two correlations were proposed, one for the Darcy friction coefficient and another for the Nusselt number. Salimpour (2009) studied a shell and tube heat exchanger with spiral tubes experimentally. They considered the viscosity, thermal conductivity, specific thermal capacity and density of the working fluid inside the tube as a function of temperature.

On the other hand, a lot of works reported the effects of different nanoparticles in heat exchangers so far. For example, the numerical simulation of flow and laminar convection in the space between the square channel and the solid pipe located in the center of it by Kalteh et al. (2011) can be pointed out. They used the Fluent software to perform numerical simulations and used a computer code developed by the user. The numerical simulation results showed suitable consistency with numerical data of pure water. Also, the results showed that by increasing the volumetric concentration of nanoparticles and decreasing the diameter of the nanoparticles, the heat transfer was improved. Moreover, they showed that concentration and the diameter of the larger nanoparticles would increase the friction coefficient. In another work, Kahani et al. (2013) studied the use of nanofluids in spiral coils experimentally. They stated that due to the bending of the coils, there was a significant increase in the amount of heat transfer and pressure drop. Saeedan et al. (2016) investigated modeling the computational fluid dynamics along with the neural network of a two-pipe heat exchanger with helix blades and the effect of different nanoparticles such as copper, copper oxide and carbon in various volume fractions. The modeling was carried out in single phase and three-dimensional conditions and the results showed that increasing the volume fraction of copper and copper oxide nanoparticles increases Nusselt number. Finally, with the aid of simulation results, a model was used to predict the Nusselt number and pressure drop in the heat exchanger, and the effect of parameters such as the Reynolds number, the volume fraction of nanoparticles and the type of nanoparticles in the neural network model was applied. In Maakoul et al. (2017), studied a double-pipe heat exchanger with helix-type buffers numerically. In their simulation, they used a three-dimensional model of computational fluid dynamics and Fluent software. The model was a single-phase model and they investigated the fluid flow in the circular section, the heat transfer coefficient, and the fluid pressure drop. In the following, a turbulent hydrodynamic and heat transfer of a turbulent flow through a spiral double-pipe heat exchanger is investigated. Moreover, the enhanced genetic algorithm of Pareto graph is used to optimize the heat transfer rate.
2. Mathematical modeling and numerical simulation process

Due to the very complex geometric nature of the heat transfer phenomenon in the two spiral tube heat exchangers, analytical solving is impossible. In addition, the limitations of our laboratory resources lead us to the use of numerical solutions. Different methods for solving equations are used in computational fluid dynamics, which due to the use of Fluent commercial software, in this study the finite volume method has been used. In this method, with the discretization of the equations in the levels of control volumes, we arrive at a system of algebraic equations, which the main purpose is to solve this system.

2.1 Governing equations

The general form of the heat transfer equations is as follows:

\[\nabla \cdot (\rho \Phi \mathbf{u}) = \nabla \cdot (\Gamma \nabla \Phi) + S_\Phi \] \hspace{1cm} (1)

Which the main equations can be obtained by replacing \(\Phi \) with the following equations.

- \(\Phi = 1 \) results in the continuity equation,
- \(\Phi = u \) results in the x-momentum equation,
- \(\Phi = v \) results in the y-momentum equation,
- \(\Phi = w \) results in the z-momentum equation,
- \(\Phi = E(\rho, T) \) results in the energy equation.

2.2 Model geometry

The created grid for simulation is shown in Figure 2. Due to the fact that the pipe walls are exposed to heat flux, the created grid near the walls are smaller to increase the accuracy of the calculations. As hexagonal cells in meshing have a high capacity at high computational speed and convergence, these kind of mesh is used in this study. In the mesh production, it should be noted that as the surrounding areas of the pipe contain more intense temperature and velocity gradients, an intensive mesh with smaller cells is needed at these areas. For this purpose, at the whole volume pertain to the external surfaces of the pipes, the mesh element size is fixed at \(2 \mu m \) while this size is fixed at \(3 \mu m \) at the internal surfaces of the pipe shell.

The simulations are performed for a spiral pipe with the inner diameter of inner pipe equal to 4.75 mm and the inner diameter of outer pipe equal to 6.35 mm. Other geometric characteristics are shown in Table I.

To ensure about the grid independency of obtained results, four different grids are produced. The heat transfer coefficient of these models are compared in Table II. According to our results, increasing the distance between knots more than \(2 \mu m \) does not change the heat transfer coefficient substantially. Therefore, fine grid with 1,239,300 elements is chosen for our further simulations.

2.3 Thermo-physical properties of nanofluid

The metal oxide types of nanofluids with nanoparticles of Al\(_2\)O\(_3\), SiO\(_2\) and CuO, which their thermo-physical properties are provided in Table III.
The nanofluid density \((\text{Kahani et al., 2013})\):

\[
\rho_{nf} = (1 - \phi) \rho_f + \phi \rho_{nf}
\]

where at this equation, \(\rho_f\) is the base fluid density based on temperature and \(\rho_{nf}\) is the density of solid nanoparticles.

The nanofluid thermal conductivity \((\text{Saeedan et al., 2016; Maakoul et al., 2017})\):

\[
(\rho C_p)_{nf} = (1 - \phi) (\rho C_p)_f + \phi (\rho C_p)_{np}
\]

\[
k_{\text{eff}} = k_{\text{static}} + k_{\text{Brownian}}
\]

\[
k_{\text{static}} = k_f \left[\frac{(k_{np} + 2k_f) - 2\phi (k_f - k_{np})}{(k_{np} + 2k_f) + \phi(k_f - k_{np})} \right]
\]

\[
k_{\text{Brownian}} = 5 \times 10^4 \beta \phi \rho_f C_p f \sqrt{\frac{KT}{2}} f(T, \phi)
\]

where \(K\) is the Boltman constant and is equal to \(1.3807 \times 10^{-23}\) J/K. Also, the refined equations by Das \textit{et al.} is as follows:

\[
f(T, \phi) = \left(2.8217 \times 10^{-2} \phi + 3.917 \times 10^{-3}\right) \left(\frac{T}{273.15}\right)
\]

\[
+ \left(-3.0669 \times 10^{-2} \phi - 3.91123 \times 10^{-3}\right)
\]

<table>
<thead>
<tr>
<th>Pitch of the spiral pipe</th>
<th>Number of pipe round</th>
<th>Coil diameter</th>
<th>Shell outer diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.74 mm</td>
<td>3</td>
<td>300 mm</td>
<td>15.87 mm</td>
</tr>
<tr>
<td>Shell inner diameter</td>
<td></td>
<td>Outer diameter of the inner pipe</td>
<td>Inner diameter of the inner pipe</td>
</tr>
<tr>
<td>14.07 mm</td>
<td></td>
<td>6.35 mm</td>
<td>4.75 mm</td>
</tr>
</tbody>
</table>

Table I. Geometric properties of the present spiral heat exchanger

<table>
<thead>
<tr>
<th>Distance between knots</th>
<th>Elements no.</th>
<th>Heat transfer coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>619,650</td>
<td>113.701</td>
</tr>
<tr>
<td>2.2</td>
<td>1,023,300</td>
<td>118.304</td>
</tr>
<tr>
<td>2</td>
<td>1,239,300</td>
<td>121.507</td>
</tr>
<tr>
<td>1.8</td>
<td>1,858,950</td>
<td>123.90</td>
</tr>
</tbody>
</table>

Table II. Grid independency test results

<table>
<thead>
<tr>
<th>Type of nanoparticles</th>
<th>Density (kg/m³)</th>
<th>Specific heat capacity (J/kg K)</th>
<th>Thermal conductivity (W/m K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>3900</td>
<td>880</td>
<td>42.34</td>
</tr>
<tr>
<td>SiO₂</td>
<td>2200</td>
<td>703</td>
<td>1.2</td>
</tr>
<tr>
<td>CuO</td>
<td>6510</td>
<td>533.6</td>
<td>18</td>
</tr>
</tbody>
</table>

Table III. Thermo-physical properties of nanoparticles
which at this correlation the effective viscosity is defined as below equation:

\[
\mu_{eff} = \mu_f \times \left(\frac{1}{1 - 34.87 \left(\frac{d_f}{\delta_f} \right)^{-0.3} \times \phi^{1.03}} \right)
\]

\((8) \)

\[
d_f = \left(\frac{6M}{N \pi \rho f_0} \right)^{1/3}
\]

\((9) \)

3. Results and discussion

The SIMPLEC algorithm is used. The convergence is achieved when the normalized residuals are less than \(5 \times 10^{-13} \) and \(5 \times 10^{-15} \) for momentum and energy equations, respectively. The non-slip boundary condition is considered on the inner shell walls and all solid walls of the computational domain. The best choice for the wall function in this intense mesh near the walls is to use the improved wall function. This wall function is used for the cases in which the value of \(y^+ \) parameter near the walls is almost 1; however, more values of \(y^+ \) to about 4 to 5 are acceptable. As the values of \(y^+ \) are in the mentioned range, in this research, this wall function is used to model the near-wall flow.

3.1 Choosing the right model to solve the problem

By analyzing the results obtained from simulations, the most suitable model for problem-solving is selected. In Figures 3 and 4, the results of the simulation and distribution of temperature contour for the three models of standard k-\(\varepsilon \), logic k-\(\varepsilon \) and k-\(\varepsilon \) RNG are shown for the first time (Shadloo, 2019; Hopp-Hirschler et al., 2019; Sadeghi et al., 2018; Hopp-Hirschler et al., 2018; Toghyani et al., 2019; Nasiri et al., 2018; Piquet et al., 2019; Shenoy et al., 2019; Nguyen et al., 2019; Lebon et al., 2018; Sharma et al., 2019; Mendez-Gonzalez et al., 2018; Shadloo and Hadjadj, 2017; Rashidi et al., 2017; Karimipour et al., 2019; Bahrami et al., 2019; Shadloo et al., 2016; Jalali and Karimipour, 2019; Arabpour et al., 2018a; Arabpour et al., 2018b; Safaei et al., 2018; Pordanjani et al., 2019; Jiang et al., 2019; Safaei et al., 2019; Bagherzadeh et al., 2019; Salimpour et al., 2019; Mozaffari et al., 2019; Gholamalizadeh et al., 2019; Tian et al., 2019; Goodarzi et al., 2019; Chelou et al., 2019; Aghakhani et al., 2018; Dehkhordi and Abdollahi, 2018; Abdollahi et al., 2018; Dehghani et al., 2019; Sede et al., 2018;}

Figure 3. Temperature contours at the inner pipe cross-section in different turbulent models including (a) Standard k-\(\varepsilon \), (b) k-\(\varepsilon \) re-normalisation group (RNG) and (c) logic k-\(\varepsilon \).
In all simulations, the same conditions are used (the element size of the 2 \(\mu m \), which was selected as the most appropriate element size in the previous section, and the water-\(\text{Al}_2\text{O}_3 \) nanofluid with 1 per cent of nanoparticle volume fraction and Reynolds number of 1,700).

As it is visible in these two figures, the RNG model can predict the behavior of the fluid in the temperature distribution lines in an appropriate manner, assuming that the rotational flow is taken into account in its equations. In Figures 3 and 4, the RNG model, which the rotational flow is considered in its equations, has the same result as the standard model. Therefore, the RNG model can correctly predict the heat transfer properties of the fluid in the spiral double-pipe heat exchangers. These figures also demonstrate that the two standard and RNG models have a more uniform temperature distribution.

The differences in temperature in Figures 3(a), 3(b) and 3(c) are 3.9, 3.7 and 12.6, respectively, for the inner pipe side and in Figures 4(a), 4(b) and 4(c) they are 5, 3.7 and 9.3, respectively for the outer pipe side. Therefore, the RNG model with rotational flow equations shows a more uniform temperature at each cross-section than two other models. In the previous study (Ali 2014), it is reported that the prediction of the K-\(\varepsilon \) model is more accurate than the RNG turbulent model, while, according to the results obtained in this study (Figures 3 and 4), the RNG model can predict the behavior of the fluid in the temperature distribution lines better than the K-\(\varepsilon \) model, assuming that the rotational flow equations are considered. Consequently, in further numerical computations, the K-\(\varepsilon \) RNG model is used considering the rotational flow equations and element sizes of 2 \(\mu m \).

3.2 Comparison of friction coefficients and pressure drop across outer tubes for different nanoparticle volume fractions

3.2.1 Friction coefficient comparison

Figures 5(a) and 5(b) imply the variations of the outer pipe friction coefficient with the Reynolds number for a different type of nanofluids at a nanoparticle volume fraction of 1 and 2 per cent, respectively, for comparison with other researchers’ experimental studies. It is visible in Figure 5(a) that at Reynolds numbers less than 16,000 the differences between the present study and experimental study are higher, however, at Reynolds numbers from 16,000 to 23,000 and 23,000 to 33,000 the simulation results are in a good agreement with those of Mishka et al. and Ito, respectively, which proves the validity of the present numerical simulation. In Figure 5(b), also at Reynolds numbers less than 16,000 the differences between the present study and experimental studies are higher because of the type of fluid movement inside the outer pipe and generated secondary flows.

3.2.2 Pressure drop comparison

Figure 6(a), 6(b) and 6(c) display the variations of the outer pipe pressure drop with Re for various kinds of nanofluids at a concentration of 0.5, 1

![Figure 4. Temperature contours at the outer pipe cross-section in different turbulent models including (a) Standard k-\(\varepsilon \), (b) k-\(\varepsilon \) RNG and (c) logic k-\(\varepsilon \).](image-url)
and 2 per cent, respectively. Figure 6(a) declares that at Reynolds numbers less than 18,000 there is a subtle difference between the nanofluids' pressure drop, but by increasing the Reynolds number higher differences in pressure drop gradually appear as the water–SiO$_2$ nanofluid has the maximum value, than water–Al$_2$O$_3$, and finally, water–CuO nanofluid accounts for the lowest pressure drop differences. Figure 6(b) demonstrates that increasing the nanoparticle volume concentrations results in higher differences in pressure drop between the three nanofluids as these differences are also higher at Figure 6(c) with a higher volume fraction of nanoparticles. Hence, the water–CuO nanofluid with the lowest pressure
drop is the best option between the three nanofluids as a working fluid, but the evaluation of heat transfer performance of the three nanofluids as a working fluid is of vital importance, which will be examined in the following paragraphs.

3.3 Heat transfer evaluation of the spiral double-pipe

Figures 7(a) and (b) declare the outer pipe Nusselt number versus Re for a different type of nanofluids at a nanoparticle volume fraction of 1 and 2 per cent, respectively, for comparison with other researchers’ experimental studies. By increasing the nanoparticles volume fraction from 1 per cent in Figure 7(a) to 2 per cent in Figure 7(b), it is visible that the Nusselt number for water–CuO nanofluid is less than the other two nanofluids and using this type of nanofluid does not lead to the best thermal performance, while the highest values for Nusselt number accounts for water–Al₂O₃ nanofluid, then water–SiO₂ nanofluid. As the goal is to maximize the Nusselt number along with minimizing the increased pressure drop, an optimization is needed for these two parameters at the three types of nanofluids. To satisfy such a need, the genetic algorithm is used in the present study.

3.4 Finding optimal performance points using genetic algorithm

In this section, the goal is to find the points where the heat exchanger has the best performance. In fact, the optimal points for the heat exchanger are the points with the highest heat transfer coefficient and the least pressure drop. On the other hand, as shown in the hydrodynamic and thermal performance of the double-pipe spiral heat exchanger, these two parameters are similar, that is, with increasing one of them,
another increase. Therefore, the multi-objective optimization problem arises. The tool used to solve the optimization problem is the multi-objective optimization toolbar of MATLAB software, which allows the use of a multi-objective genetic algorithm. Multi-objective optimization (MOO) shows to discover the optimal amount, larger than the desired target. MOO using motivation is due to optimization and also it would not need complicated equations. MOO objective function is a function of solution approach; So that there is not a unique best solution for the whole goals. The optimal set approach is named Pareto optimal method in MOO. Moreover, the genetic algorithm is a method for solving bounded and unbounded optimization problems, which acts on the basis of the principle of natural selection. In computer language, this is done by mapping the problem into a set of digital strings and changing them to get a better answer. Pareto graph obtained from optimal solutions are shown in Figure 8. In Table IV, the optimal values and the target functions values are presented as the result of the work. It can be seen that the optimal Reynolds number determines the type of nanofluid and its volume fraction, such that it can be determined by specifying the operating range of the

Figure 7.
Nusselt number with Reynolds number in outer tubes for nanofluids with nanoparticles volume fractions of (a) 0.5 per cent, (b) 1 per cent and (c) 2 per cent.

Figure 8.
The value of target functions in optimum performance points (Pareto graph).
nano fluid in the closed system, including a centrifuge pump and a spiral double-pipe heat exchanger, a suitable nanoparticle with the required volume concentration. At \(Re = 10,551 \) to \(Re = 17,220 \), water–\(\text{Al}_2\text{O}_3 \) is the best choice, while at \(Re = 17,220 \) to \(Re = 31,910 \), water–\(\text{SiO}_2 \) is the best option.

4. Conclusion

In this study, after presenting the results obtained from numerical simulations and selecting the \(k-\varepsilon \) RNG model with the best performance, the friction coefficient, pressure drop and heat exchanger thermal performance were investigated. The results showed that in Reynolds numbers less than 16,000, the effect of the type of nanoparticle is subtle and negligible. However, in higher Reynolds numbers, the rate of differences in pressure drop was gradually enhanced and with the augmentation in the nanoparticles’ volume fractions, the differences in the pressure drop of different nanoparticles’ types were seen. On the other
hand, due to the interaction of the two performance parameters on each other, the genetic algorithm was used to find optimal performance conditions.

References

Corresponding author
Marjan Goodarzi can be contacted at: marjan.goodarzi@tdtu.edu

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com