The use of mechanochemical processing in preparation of ultrafine Bi-substituted Yttrium Iron Garnet (Bi-YIG)

A. Hasanpour, J. Amighian, M. Mozaffari

Department of Physics, University of Isfahan, Iran 81746-7344.
E-mail: jamighian@sci.ui.ac.ir

(Received: 14/10/2003, received in revised form: 5/2/2004)

Abstract: In this work we have prepared nano-sized Bi-YIG powders, using mechanochemical processing. In this process, a part of the activation energy, which is necessary for chemical reactions, is provided by high-energy mills. The as milled powders obtained by this technique need a lower annealing temperature in comparison with those obtained by conventional ceramic technique to become a single phase garnet. The lower temperature itself can produce ultrafine powders by inhibiting grain growth. The optimum calcining temperature was 800 °C for 5 hours milling time, which is much lower than 1000°C needed in conventional ceramic technique. Longer milling times are not recommended, because it produces extra iron into the powders. The average particle size of the powders was in the range 50 to 60 nm, using Scherrer’s formula. Room temperature saturation magnetizations of the samples were measured using a vibrating sample magnetometer (VSM). These were 0.022, 6, 17 and 20 emu/g for the samples annealed at 700, 725, 750 and 800 °C, respectively. The lower magnetization values respect to the conventional ceramic technique, are discussed according to core-shell model.

Keywords: Mechanochemical processing, Nanoparticles, Substituted garnets, Calcining temperature, Saturation Magnetization
کاربرد فراگرد مکانوشیمیایی در تهیه پودرهای بس ریز گانت

ایتروم آهن با جانشینی پیسموت (BiY\textsubscript{3}Fe\textsubscript{8}O\textsubscript{19})

احمد حسن پور، جمشید عمیقیان، مرتضی مظفری

دریافت مقاله ۱۳۸۲/۲/۲۲، دریافت نسخه نهایی ۱۳۸۲/۱۱/۱۶

چکیده: در این پژوهش پودرهای نانومتری گانت ایتروم-آهن با جانشینی پیسموت به کمک فراگرد مکانوشیمیایی تهیه شد. در این رویکرد شده به خصیص از انرژی فعال سازی واکنش شیمیایی توسط آسیاب بر روی تنگاتrifای نمود. این آسیاب موجب کاهش همای تشکیل فاز و متقابل به یک‌پاترالین فاز بریز می‌شود که مورد اخیر نشیه از محدود دسته بسته ذرت ارائه شد. در این پژوهش به‌طور خاص پس از ۲ ساعت آسیاب کاری در دمای ۳۰۰ درجه سانتی‌گراد، ۸۰ درصد از آن دما در مقایسه با دمای تشکیل فاز مورد نظر در روش متدول سرامیکی، یاپی‌تیست است. نتایج میگنیکن نیز از روی الگوی برای برآورد اکسید در گستره ۵۰ تا ۸۰ (SEM) و نیز از روی الگوی برای برآورد اکسید در گستره ۵۰ تا ۸۰ (VSM) انتخابی شد. مقادیر کوچکتر مقدار اشیایه اسپزیمی بهبود یافته شده نسبت به نمونه‌های ساخته شده به روش متدول سرامیکی بر اساس نظریه هسته-پویه مورد

بحث قرار گرفته است.

واژه‌های کلیدی: فراگرد مکانوشیمیایی، نانومتری، گانت‌های جانشینی شده، دمای برششی، مقدارهای اشیایه
مقدمه

امروز، ذرات مغناطیسی نانو‌سازی به‌خاطر نک تک‌جزوه‌ای بودن، در پژوهش‌های فیزیک ماده چگال جایگاه ویژه‌ای دارند. انتزاع کوچک این ذرات موجب پدیدای انرژی کالورنی در نارنج و تولید ذرات مغناطیسی می‌شود [11]. از نظر کاربردی بیش از ۱۰۰ نوع ذرات در تکنیکی اطلاعات به روش مغناطیسی با مشابه‌تری به منظور شناسایی تئوریهای ذهن‌سازی خلاقیت ذهن‌سازی اهمیت ذرات دارد. نام گروه‌های

\[Y_{3}Fe_{5}O_{12} \] (YIG) با فرمول شیمیایی

\[Ca_{2}Sr_{2}Si_{3}Al_{3}O_{12} \] هم ساختار است که با کلاس گرافیت (گرافیت پیوست) به‌طور شیمیایی با فرمول شیمیایی

\[Y_{3}Fe_{5}O_{12} \] را اشغال می‌کند و یک ساختار مکانیکی زنجیره‌ای (bcc) را تشکیل می‌دهند. پهناهای مغناطیسی آهن در بست و چهار جایگاه چپ‌پشتی (۲۴د) و شانزده جایگاه هشت و جهی (۱۶ه) قرار می‌گیرند و پهناهای نانو-اسپینی

\[d \] به طور پایدار مغناطیسی جفت می‌شوند. گفتار

تاریخ و بر اساس گزارشات (YIG) بر اساس مغناطیسی آهن به‌طور مشابه که به آن برهم‌کنش این تبادل \(d \) گویند.

\[\text{هگامی} \] که جایگاه‌های دوارد و ویژه (۶) با پهناهای مغناطیسی پر شوند، گشاور

\[\text{مغناطیسی} \] این پوشا بای پرینده گفتار جایگاه‌های \(d \) به نیز پادافر مغناطیسی جفت می‌شوند

\[d = (M_{d} - M_{g}) - M_{k} \]

در این حالت مغناطیسی کل گزارش از رابطه

\[M_{g} = (M_{k} - M_{d}) \]

تاریخ مغناطیسی زیر شیب‌های چپ‌پشت و جهی، هشت و دو گزارش ویژه

\[\text{اسک} \] گاز و همکارانش نشان داده که پهناه‌ای مغناطیسی بی‌پروپیونیدانت کاریک

\[\text{پرسه‌ای مغناطیسی} \]

\[\text{ینک‌های پرورش‌یافته در ساخت‌دهنده و دستگاه‌های نایشگر} \]

\[\text{Mg} \] می‌شود. [13] از این راه، گفتار مغناطیسی بی‌پروپیونیدانت کاریک بر اساس

\[\text{یکی از پرکاربردترین موارد مغناطیسی در ساخت دستگاه‌های و دستگاه‌های نایشگر} \]

\[\text{Mg} \] می‌شود. [13] از این راه، گفتار مغناطیسی بی‌پروپیونیدانت کاریک بر اساس

\[\text{یکی از پرکاربردترین موارد مغناطیسی در ساخت دستگاه‌های و دستگاه‌های نایشگر} \]

\[\text{Mg} \] می‌شود. [13] از این راه، گفتار مغناطیسی بی‌پروپیونیدانت کاریک بر اساس

\[\text{یکی از پرکاربردترین موارد مغناطیسی در ساخت دستگاه‌های و دستگاه‌های نایشگر} \]
روش آزمایش

برای تهیه نمونه از مواد اولیه آزمایشگاهی شامل اسیدهای ایتیریوم (Y₄O₇), (Nd₂O₃) و بیسموت (Bi₂O₃) استفاده شد. این مواد به ترتیب با نسبت‌های مولی 0.6 و 1 توزین و سپس با یک دستگاه SPEX 8000D در زمانهای گوناگونی از 1 تا 30 ساعت با سرعت 10000 rpm آسفالش شد. دیلی انتخاب نسبت مولی 0.65 به جای 5 برای اکسید آهن (Fe₂O₃) از الگوریتم استاتوکومپریتری آن در خاکستری شرکت گلوله‌ی فولادی در این فرایند است. این نسبت با روش سی و خطا طوری تعیین شد که به یک ترکیب مولی بانوان شیمیایی تک گزارش شود. نسبت جرم مواد به جرم گلوله‌ی 1:7 انتخاب گردید. حجم ظرف اسیاب 80 میلی لیتر و از 3 گلوله فولادی به قطر 128 و 4 گلوله فولادی به قطر 5 میلی متر استفاده شد. پس از اسیاب، برای دست و اردن منظور از یک دستگاه تیم گزارش می‌شود که با استفاده از این دستگاه گزارش آن به هم نمونه‌ها Nabertherm ساخت شد. این دستگاه برای هر نمونه آلمان استفاده شد. آهنگ گردش شرکت مورد نظر Nabertherm استفاده شد. در هر 3 میلی‌متر در گستره ۰ تا ۵۰ °C/min و رمان پریشان 3 ساعت انتخاب شد. برای سرد پیشین پدیده در نظر گرفته شد. نتایج حاصله با کوره گاز اینالیز توانایی و گاز آزاد در نسبت بندی شده. برای شناسایی حالت‌‌های فازی مورد نسبت به XRD XPERT مدل مختلف استفاده شد. ساخت شرکت ویلی مدل (B) استفاده شد. با استفاده از این دستگاه برای بررسی آسیب دیده شد که حاصل می‌شود. اندازه‌گیری به کمک راپید شرکت آندازه‌گیری دوباره محاسبه گردید. برای منظورهای یک درک کمک برمول شیمیایی همسان ولی که 2 نیز استفاده شد نشان می‌دهد که در آن 0.97 λ = τ θ = κ بیشترین آن برای پیشنهاد یک رابطه شرکت با استفاده از رابطه λ = 0.8 توانایی و همبستگی به دارایی برخی که در این دستگاه بیشترین θ X است، این دستگاه بیشترین θ X است
بیهونه شناختی از اندازه‌گیری صفر خواهند شد و نه بیهونه شناختی به خاطر سایر عوامل (\(B_0\)) بر جای خواهد ماند. در اینجا ما با استفاده از یک نمونه کمکی با اندازه معادل 1000 نانومتر، \(B_0\) را به دست آورده و سپس با به کارگیری رابطه \(B = B_0^2 - B_0\) مقدار \(B\) را به دست آورده و سپس با به کارگیری رابطه \(B = B_0^2 - B_0\) از اندازه‌گیری نمونه انجام می‌دهیم. در این روش، عنوان‌های برای اندازه‌گیری با میکروسکوپ الکترونی (SEM) نیز انجام گیرد. مناطق مشاهده در یک جرم نمونه از دو دام اتقاق 60 به سیاله یک سنتامگ مداخله سنج ارتعاشی\(\times\) اندازه‌گیری شد.

یک کامپیوتر الکترونیکی XRD در آسیاب جدا شده و پودر و نمونه که نیاز به دمای 780 درجه سانتی‌گراد برای شکست و تشکیل شدن کرده، این امر برای استحکامات و انتقال نمودن نهایی به دست آمده با استفاده از رابطه بین نمودن دام به دست آمده با اندازه‌گیری SEM در تصاویر نمایان داده شده است. در دو دامان 0 تا 80 نمودن، البته نمودن به دست آمده با انتقال نتایج با اندازه‌گیری SEM در تصاویر نمایان داده شده است.

![شکل 1: اندازه‌گیری پرتو X به‌وزن نمونه، مشاهده شده در دماهای 250 و 750 درجه سانتی‌گراد.](image-url)
الگوی پودر آسیاب شده به مدت 20 ساعت و شش به شش در دمای 93 درجه سانتی‌گراد رادیاسیون اولیه که یک فاز گازی به طور کامل تشکیل شده است. با توجه به زمان طولانی آسیاب و ساپر یکه و انتقال نور و گازهای های آسیاب و در نتیجه افزایش آلودگی ناشی از آن، انجام این کار پیشنهاد نشده. مغناطیس اشیاعی نمونه‌ها در دمای اتفاق برای نمونه‌های شده در دماهای 750، 876.72 و 930 درجه سانتی‌گراد در ترتیب 12، 6 و 17 میکرومگرمی به دست آمد (شکل 4). مقدار ناحیه مغناطیسی در دماهای 750 درجه سانتی‌گراد با مقادیر تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. 200 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده دیگر ارزیابی شده و نمونه‌های شده در دمای 725 درجه سانتی‌گراد به دست آمده این نمونه‌ها، بین 750 و 178 میکرومگرمی به دست آمده. ناحیه تایید نشده D
بیانیه همیشه بر اساس اینکه میزان مساحای از زحمات سیستم خانه صرسی از بخش‌های دانشگاهی و دانشگاهیان L. Grace مواد دانشگاهی اصفهان در نیز از پروپسور XRD و VSM (National Taiwan University) به عنوان انتخاب گیری‌های سیاست و نمایندگی مراجع