Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids☆

Mohammad Hemmat Esfe a,⁎, Wei-Mon Yan b,⁎, Mohammad Akbari a,⁎, Arash Karimipour a, Mohsen Hassani a

a Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
b Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, ROC

A R T I C L E I N F O

Keywords:
DWCNTs
ZnO
Nanofluid
Thermal conductivity
Correlation

A B S T R A C T

Available online 4 October 2015

Experimental study on the effects of solid volume fraction and temperature on thermal conductivity of DWCNT (inner diameter of 3 nm)-ZnO (diameter of 10-30 nm)/water-ethylene glycol (60:40) nanofluids have been performed using KD2-Pro thermal analyzer in details. The experiments are carried out at solid concentration up to 1% and temperature ranging from 25 to 50 °C. Based on experimental results, using non-linear regression on results of experiments, a correlation as a function of temperature and solid volume fraction has been proposed. Measured data show that the relative thermal conductivity enhances with increasing concentration of nanoparticles. The increasing temperatures also increase the thermal conductivity of nano-fluids, although its effect on the thermal conductivity compared to the effect of volume fraction is lower.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nano-fluids are common base fluids that include water, ethylene glycol or oil containing nanometer particles which have innovative properties that make them potentially useful in many engineering and industrial applications. The nanoparticles used in nano-fluids are usually prepared of metals, oxides or carbon nanotubes [1–10]. Information of the rheological behavior of nanofluids is found to be very important in determining their appropriateness for heat transfer applications. Hence, many researchers around the world have investigated the behaviors of nanofluids. A summary of existing experimental studies for the thermal conductivity of different oxide nanofluids is presented in Table 1. It is observed in Table 1 that the thermal conductivity of nanofluids is related to the size and the shape of nanoparticles, the solid volume fraction of nanoparticles, and the thermo-physical properties of nanoparticles and the base fluid.

Recently, carbon nanotubes (CNTs) have been frequently studied as a nano-material owing to the unique thermal properties [17–19]. Table 2 presents some studies for the thermal conductivity enhancement of CNT/nanofluids at room temperature. Since the experimental measurement of thermal conductivity of nanofluids is expensive and longtime process, many researchers tried to proposed correlations for predicting the thermal conductivity of nanofluids. Some examples of empirical correlation provided for thermal conductivity of nanofluids are shown in Table 3. All of these correlations are expressed based on experimental data and have good accuracy. In all of the correlations, k is the thermal conductivity of nanofluid, φ is solid concentration, T is the temperature of the nanofluid in °C and d is diameter in nm. Also, subscript of n, b and p indicates respectively nanofluid, base fluid and particle.

Recently, the computing methods are used for estimating accurately the thermal conductivity of nanofluids which are known as neural networks, genetic algorithms and fuzzy logic. In this regard, Hojjat et al. [36] measured the thermal conductivity of three different nanofluids, Al2O3, TiO2, and CuO. Then, using neural network, they modeled the experimental results using temperature and volume fraction of nanoparticle as input, and thermal conductivity of nanoparticles as output of neural network. Longo et al. [37] proposed two artificial neural network models for estimating the thermal conductivity of Al2O3/water and TiO2/water nanofluids by the temperature, volume fraction, diameter of nanoparticle and particle thermal conductivity as the input variables. They used thermal conductivity of nanoparticles as output of neural network. The prediction of the thermal conductivity of MgO/EG nanofluids by artificial neural network (ANN) was performed by Hemmat Esfe et al. [38] using experimental data. In their study, the solid volume fraction, diameter of nanoparticle and temperature are considered as the input data and thermal conductivity of nanofluid is the output variable. Hemmat et al. [39] also examined the thermal conductivity of the ZnO/EG nanofluid and presented a prediction model using artificial neural network. The results disclosed that the predicted results are in good agreement with the experimental data. It is clear from the above.
The transient hot wire method acts by measuring the response of a heating element to a sudden electrical input. A tiny metal wire is inserted in the test liquid acting as both temperature sensor and heat source. The transient hot wire method is employed in different studies for the thermal conductivity enhancement of CNT/nano fluids. The percentage of increase in thermal conductivity of nano fluids at low solid volume fractions is relatively higher than that at the other volume fractions. To make a better understanding of the effects of temperature on the thermal conductivity, the relative thermal conductivity of functionalized DWCNT-ZnO/water-EG (60:40) nano fluids versus temperature for different solid volume fractions is depicted in Fig. 2. As shown in Fig. 2, with increase in temperature, the relative thermal conductivity of nano fluids increases slightly for different solid volume fractions. The relative thermal conductivity at high solid volume fractions is higher than that at low solid volume fractions; therefore, thermal conductivity enhancement at low solid volume fractions (less than 0.25%) is relatively higher than that at the other volume fractions.

The experimental investigation of thermal conductivity of functionalized DWCNT-ZnO/water-EG (60:40) nano fluids is performed in this work. Next, a correlation to estimate the thermal conductivity of nano fluids is proposed. During the measurement the bath was turned off to elude vibrations. It was essential to wait for about 15 min between readings to recover the

3. Results and discussion

The empirical correlation provided for thermal conductivity of nano fluids is depicted in Fig. 1. As shown in Fig. 1, the experimental investigation of thermal conductivity of functionalized DWCNT-ZnO/water-EG (60:40) nano fluids versus temperature for different solid volume fractions is depicted in Fig. 2. As shown in Fig. 2, with increase in temperature, the relative thermal conductivity of nano fluids increases slightly for different solid volume fractions. The relative thermal conductivity at high solid volume fractions is higher than that at low solid volume fractions; therefore, thermal conductivity enhancement at low solid volume fractions is negligible.

The percentage of increase in thermal conductivity of nano fluids compared to the base fluid, depending on the volume fraction at different temperatures is displayed in Fig. 3. It is clear that the maximum of thermal conductivity enhancement is noted for a case with maximum values of solid volume fraction and temperature. On the other hand, the effects of temperature on the thermal conductivity at high solid volume fractions are significant, relatively to that at low solid volume fractions.

Table 1
A summary of existing experimental studies for the thermal conductivity of different oxide nano fluids according to the various parameters.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Base fluid</th>
<th>Dispersed particles</th>
<th>Temperature range (°C)</th>
<th>Nanoparticle size (nm)</th>
<th>Concentration range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das et al. [11]</td>
<td>Water</td>
<td>Al₂O₃</td>
<td>20–50</td>
<td>38.4</td>
<td>1.0–4.0</td>
</tr>
<tr>
<td>Li and Peterson [12]</td>
<td>Water</td>
<td>CuO</td>
<td>27–37</td>
<td>36 & 47</td>
<td>0.5–6.0</td>
</tr>
<tr>
<td>Chandrasekar et al. [13]</td>
<td>Water</td>
<td>Al₂O₃</td>
<td>NA</td>
<td>43</td>
<td>0.33–5.0</td>
</tr>
<tr>
<td>Reddy et al. [14]</td>
<td>EC-water</td>
<td>TiO₂</td>
<td>30–70</td>
<td>21</td>
<td>0.2–1.0</td>
</tr>
<tr>
<td>Sundar et al. [15]</td>
<td>Water</td>
<td>Fe₂O₃</td>
<td>20–60</td>
<td>13</td>
<td>0.0–2.0</td>
</tr>
<tr>
<td>Jeong et al. [16]</td>
<td>Water</td>
<td>ZnO</td>
<td>NA</td>
<td>20–40</td>
<td>0.05–5.0</td>
</tr>
</tbody>
</table>

Table 2
Some studies for the thermal conductivity enhancement of CNT/nano fluids at room temperature.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Base fluid</th>
<th>Dispersed particles</th>
<th>Maximum enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xie et al. [20]</td>
<td>Water</td>
<td>MWCNT</td>
<td>7.0%</td>
</tr>
<tr>
<td>Assael et al. [21]</td>
<td>Water</td>
<td>MWCNT</td>
<td>38.0%</td>
</tr>
<tr>
<td>Hwang et al. [22]</td>
<td>Water</td>
<td>DWCNT</td>
<td>11.3%</td>
</tr>
<tr>
<td>Ansrollahi et al. [23]</td>
<td>EG</td>
<td>SWCNT</td>
<td>20.0%</td>
</tr>
<tr>
<td>Nanda et al. [24]</td>
<td>EG</td>
<td>SWCNT</td>
<td>35.0%</td>
</tr>
<tr>
<td>Glory et al. [25]</td>
<td>Water</td>
<td>MWCNT</td>
<td>64.0%</td>
</tr>
<tr>
<td>Jha and Ramaprabhua [26]</td>
<td>Water</td>
<td>Ag-MWCNT</td>
<td>37.3%</td>
</tr>
<tr>
<td>Liu et al. [27]</td>
<td>EG</td>
<td>MWCNT</td>
<td>12.4%</td>
</tr>
<tr>
<td>Harish et al. [28]</td>
<td>EG</td>
<td>SWCNT</td>
<td>14.8%</td>
</tr>
</tbody>
</table>

Table 3
Empirical correlation provided for thermal conductivity of nano fluids.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Nanofluids</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chon et al. [29]</td>
<td>Al₂O₃/water</td>
<td>$k_{bf} = 1 + 64.74d_{f}^{0.3746}(d_{f}^{0.3695})^{0.7476}$, $Pr^{0.9955}Re^{0.2321}$</td>
</tr>
<tr>
<td>Li and Peterson [30]</td>
<td>Al₂O₃/water</td>
<td>$k_{bf} = 3.761 + 0.017924 + 0.30734$</td>
</tr>
<tr>
<td>Teng et al. [32]</td>
<td>TiO₂/water</td>
<td>$k_{bf} = 0.991 + 0.253(100d_{f})^{-0.002d_{f} - 0.189(100d_{f})^{2} + 0.61590 \times 10^{-3} d_{f}^{2} + 1.117 \times 10^{-1} d_{f}^{3} + 0.049(100d_{f})^{4} - 0.766 \times 10^{-7} d_{f}^{4}}$</td>
</tr>
<tr>
<td>Ghanbarpour et al. [33]</td>
<td>Al₂O₃/water</td>
<td>$k_{bf} = 0.951 + 2.5d_{f} + 1.0d_{f}^{2}$</td>
</tr>
<tr>
<td>Hemmat Esfe et al. [34]</td>
<td>DWCNT/water</td>
<td>$Re^{0.991}Pr^{0.001}$</td>
</tr>
<tr>
<td>Hemmat Esfe et al. [35]</td>
<td>MWCNT/water</td>
<td>$Re^{0.991}Pr^{0.001}$</td>
</tr>
</tbody>
</table>
According to data from experiments conducted on the thermal conductivity of functionalized DWCNT-ZnO/water-EG (60:40) nano fluids, a correlation to estimate the thermal conductivity of the nano fluid is proposed.

\[
\frac{k_{nf}}{k_{bf}} = 1.085e^{(0.003517 \cdot T + 0.13\phi^2)} + 0.0288 \ln(\phi)
\]

(1)

The comparison between experimental data and results obtained using the correlation is shown in Fig. 4. As can be seen, the correlation has an appropriate accuracy and is able to predict the relative thermal conductivity at various temperatures and solid volume fractions.

To understand the applicability of the experimental findings and data obtained from the correlation, the outputs of the proposed correlation versus experimental data are plotted in Fig. 5. As shown in Fig. 5, the most points have a good accuracy and locate near the bisector.

4. Conclusion

In the present study, the thermal conductivity of functionalized DWCNT(inner diameter of 3 nm)-ZnO(diameter of 10-30 nm)/water-EG (60:40) nano fluids is experimentally obtained using transient hot wire method. Experiments were carried out for solid volume fraction ranging from 0.25% to 1% and temperature ranging from 25 to 50 °C. The results showed that with increasing volume fraction of nanoparticles relative thermal conductivity enhances. The increasing temperatures also increase the thermal conductivity of nano fluids, although its effect on the thermal conductivity compared to the effect of volume fraction, was lower. Using experimental data, the correlation was proposed to estimate thermal conductivity of functionalized DWCNT-ZnO/water-EG (60:40) nano fluids. Then, the accuracy and margin of deviation were investigated using different graphs. The results of these investigations showed that the proposed correlation can accurately estimate the thermal conductivity of nano fluid at different temperatures and solid volume fractions.
The financial support by the Ministry of Science and Technology, R.O.C., through the contract MOST 103-2221-E-027-107-MY2 is highly appreciated.

References

