An experimental study on thermal conductivity of F-MWCNTs–Fe$_3$O$_4$/EG hybrid nanofluid: Effects of temperature and concentration

Saeed Sarbolookzadeh Harandi a, Arash Karimipour a,*, Masoud Afrand a,*, Mohammad Akbari a, Annunziata D’Orazio b

a Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
b Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica, Sapienza Università di Roma, Via Eudossiana 18, Roma 00184, Italy

Abstract

In this paper, an experimental study on the effects of temperature and concentration on the thermal conductivity of F-MWCNTs–Fe$_3$O$_4$/EG hybrid nanofluid is presented. The experiments were carried out for solid volume fraction range of 0 to 2.3% in temperatures ranging from 25 °C to 50 °C. The results revealed that the thermal conductivity ratio enhances with increasing the solid volume fraction and temperature. Results also showed that, at higher temperatures, the variation of thermal conductivity ratio with solid volume fraction was more than that at lower temperatures. Moreover, the effect of temperature on the thermal conductivity ratio was more noticeable at higher solid volume fractions. The thermal conductivity measurements also showed that the maximum thermal conductivity ratio was 30%, which occurred at temperature of 50 °C for solid volume fraction of 2.3%. Finally, for engineering applications, based on experimental results, a precise correlation was suggested to predict the thermal conductivity of F-MWCNTs–Fe$_3$O$_4$/EG hybrid nanofluids.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nanofluids, which were first introduced by Choi [1], are practical colloids composed of a base fluid and the solid nanoparticles. Nanoparticles are usually made of metals, oxides or carbon nanotubes (CNTs). Nanofluids have advanced properties that make them conceivably useful in numerous heat transfer applications such as electronics, heat exchangers, heat pipes, solar collectors and so on [2–6]. Since the thermal conductivity of nanoparticles is higher than that of the base fluids, they enhance the thermal conductivity and heat transfer performance of the base fluids significantly. Accordingly, several researchers reported the thermal conductivity enhancement of nanofluids in many studies [7–16]. All these studies showed that nanofluids improved the thermal conductivity of the base fluids. They also described that the thermal conductivity of nanofluids is dependent on temperature, size and concentration of nanoparticles.

In recent years, there has been concentration on new nanofluids, called hybrid nanofluids, to improve the performance of heat transfer fluids. The hybrid nanofluids can be prepared by suspending various types of nanoparticles in the base fluids. Many studies on the thermal conductivity of hybrid nanofluids can be found in the literature. In this regard, Suresh et al. [17] synthesized Al$_2$O$_3$–Cu hybrid particles by hydrogen reduction technique. They prepared Al$_2$O$_3$–Cu/water hybrid nanofluids with volume concentrations from 0.1% to 2%. Their results revealed that the thermal conductivity of the hybrid nanofluid increases with the solid volume fraction. The experimental data showed a maximum thermal conductivity enhancement of 12.11% for a solid volume fraction of 2%. Nine et al. [18] investigated the water based Al$_2$O$_3$–MWCNTs hybrid nanofluids over 1% to 6% weight concentration. They compared the thermal conductivity of hybrid nanofluids with Al$_2$O$_3$/water monotype nanofluids. Their results showed that hybrid nanofluids with spherical particles exhibited a smaller increase in thermal conductivity comparing cylindrical shape particles. Baghbanzadeh et al. [19] synthesized a hybrid of SiO$_2$/MWCNTs by wet chemical method at room temperature. They investigated the effect of MWCNTs, SiO$_2$ nanospheres and hybrid nanostructures on the thermal conductivity of distilled water. Their results showed that the maximum and minimum enhancements in the effective thermal conductivity of the fluids were related to MWCNTs and silica nanospheres. They also reported that the enhancement for the hybrid nanomaterial was a value between the monotype nanofluids. Madhesh et al. [20] investigated the thermal conductivity of copper–titania/water hybrid nanofluids in volume concentrations ranging from 0.1% to 2.0% and temperatures ranging from 30 °C to 60 °C. Their results showed that the thermal conductivity of the hybrid nanofluid increases to 60%. Munkhbayar et al. [21] reported significant enhancement in the thermal conductivity of Ag–MWCNTs/water. They showed that the maximum
thermal conductivity enhancement was achieved by a fluid containing 0.05 wt.% MWCNTs–3 wt.% Ag' composite. Chen et al. [22] examined the effect of combing MWCNTs graphite as a promoter on thermal conductivity of water based nanofluids. Their results revealed that the thermal conductivity enhancement of the nanofluid containing 0.05 wt.% MWCNTs and 0.02 wt.% Fe₃O₄ nanoparticles was 27.75%. They reported that this amount was higher than the thermal conductivity enhancement of nanofluid containing 0.2 wt.% single MWCNTs or Fe₃O₄ nanoparticles. Sundar et al. [23] investigated the thermal conductivity of MWCNT–Fe₃O₄/water hybrid nanofluids in temperatures ranging from 30 °C to 60 °C for solid volume fractions of 0.1% and 0.3%. Their experimental data showed a maximum thermal conductivity enhancement of 40%. Hemmat Esfe et al. [24] measured the thermal conductivity of Ag–MgO/water hybrid nanofluid with solid volume fraction range between 0% and 3%. They showed a maximum thermal conductivity enhancement of 20%. Hemmat Esfe et al. [25] investigated the effects of temperature and solid volume fraction on thermal conductivity of CNFs–Al₂O₃/water nanofluids. They conducted the experiments with various solid volume fractions in ranging from 0.02% to 1.0% and various fluid temperatures of 303, 314, 323 and 332 K, their measurements revealed that the maximum enhancement of thermal conductivity was 17.5%.

Previous research study shows that research on the composition of MWCNTs and Fe₃O₄ nanoparticles only has been performed by Sundar et al. [23]. They dispersed the hybrid solid additives in water. Fe₃O₄ nanoparticles are magnetite; thus, fluid flow and heat transfer of this nanofluid can be changed by a magnetic field. In many previous studies, the effects of the magnetic field on fluid flow and heat transfer rate have been reported [26–32]. In this study, for the first time, the composition of functionalized multi-walled carbon nanotubes (f-MWCNTs) and iron oxide (Fe₃O₄) nanoparticles is dispersed in ethylene glycol (EG) as a base fluid. The thermal conductivity of the hybrid nanofluid is examined at different temperatures for various solid volume fractions. Moreover, a comparison between the thermal conductivity enhancement of f-MWCNTs–Fe₃O₄/EG hybrid nanofluid and other monotypes of nanofluids, reported in previous works, is presented. Finally, efforts will be made to provide a precise correlation, as a function of temperature and solid volume fraction, for predicting the thermal conductivity of the hybrid nanofluid.

2. Experimental

2.1. Preparation of samples

In the present study, a two-step method has been employed to prepare the samples. In this way, dry f-MWCNTs and Fe₃O₄ nanoparticles were mixed with an equal volume. This combination was dispersed in ethylene glycol with solid volume fractions of 0.1%, 0.25%, 0.45%, 0.8%, 1.25%, 1.8% and 2.3%. The properties of f-MWCNTs, Fe₃O₄ nanoparticles and ethylene glycol are presented in Tables 1, 2 and 3, respectively. In order to attain a characterization of the sample, the structural properties of dry MWCNTs and Fe₃O₄ nanoparticles were measured using X-ray diffraction and are displayed in Fig. 1.

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity</td>
<td>>98%</td>
</tr>
<tr>
<td>Content of −COOH</td>
<td>2.56 (wt.%)</td>
</tr>
<tr>
<td>Color</td>
<td>Black</td>
</tr>
<tr>
<td>Outer diameter</td>
<td>5–15 (nm)</td>
</tr>
<tr>
<td>Inner diameter</td>
<td>3–5 (nm)</td>
</tr>
<tr>
<td>Length</td>
<td>~50 (μm)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>1500–3000 (W/m·K)</td>
</tr>
<tr>
<td>True density</td>
<td>~2100 (kg/m³)</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity</td>
<td>>98%</td>
</tr>
<tr>
<td>Color</td>
<td>Dark brown</td>
</tr>
<tr>
<td>Diameter</td>
<td>20–30 (nm)</td>
</tr>
<tr>
<td>SSA</td>
<td>40–60 (m²/g)</td>
</tr>
<tr>
<td>Shape</td>
<td>Spherical</td>
</tr>
<tr>
<td>True density</td>
<td>4.8–5.1 (g/cm³)</td>
</tr>
</tbody>
</table>

To attain a suitable dispersion, after magnetic stirring for 2 h, each sample was exposed to an ultrasonic processor (Hielscher Company, Germany) with the power of 400 W and frequency of 24 kHz for optimal duration of 5.5 h. All samples have a good stability and no sedimentation was observed in the long time before the experiments. The photograph of solid particles and nanofluid samples is shown in Fig. 2.

2.2. Thermal conductivity measurement

In the present work, a KD2 Pro (Decagon Devices, Inc., USA) thermal property analyzer, with the KS-1 probe made of stainless steel, is used for measuring the thermal conductivity of the nanofluid samples. This probe is vertically inserted into the nanofluid located in a stable temperature bath. The maximum error of this device is about 5%. Before the experiments, the device was calibrated with glycerin suggested by the company. All the measurements of the thermal conductivity were repeated three times in the temperatures ranging from 25 °C to 50 °C. Based on the experiments, the “thermal conductivity ratio” and “thermal conductivity enhancement” are defined as,

\[
\text{Thermal conductivity ratio} = \frac{k_{nf}}{k_{bf}}. \tag{1}
\]

\[
\text{Thermal conductivity enhancement} (\%) = \left(\frac{k_{nf} - k_{bf}}{k_{bf}}\right) \times 100 \tag{2}
\]

where, \(k_{nf}\) and \(k_{bf}\) are respectively the thermal conductivity of nanofluid and base fluid.

3. Results and discussion

In this study, the examination of the thermal conductivity of f-MWCNTs–Fe₃O₄/EG hybrid nanofluids was performed in the temperature ranging from 25 °C to 50 °C for samples with solid volume fraction of 0.1%, 0.25%, 0.45%, 0.8%, 1.25%, 1.8% and 2.3%. Results were divided into three subsections that are mentioned below.
3.1. Effects of solid volume fraction and temperature

Fig. 3 depicts the thermal conductivity of the hybrid nano fluids against solid volume fraction at different temperatures. The thermal conductivity of the hybrid nano fluids against temperature for various nano fluid samples is depicted in Fig. 4. It can be observed that the thermal conductivity of the hybrid nano fluid considerably enhances with rising temperature and solid volume fraction. Figs. 3 and 4 also show that there is a parallel trend for each solid volume fraction and temperature. The main cause of improving of thermal conductivity due to the temperature rising may be described by the augmentation of interactions between the nanoparticles and Brownian motion. Moreover, at higher solid volume fractions, the number of suspended nanoparticles is higher. It may lead to enhance the ratio of surface to volume and collisions between particles. In fact, in the presence of large amounts of particles, the effect of temperature on motion of the particles is more tangible.

In order to more detailed assessment of thermal conductivity enhancement, the variation of thermal conductivity ratio of the hybrid nano fluid versus the solid volume fraction and temperature is displayed in Fig. 5. As it is obvious from this figure, at higher temperatures, the variation of thermal conductivity ratio with solid volume fraction is more than that at lower temperatures. Moreover, investigation of thermal conductivity ratio makes it clear that the effect of temperature on the thermal conductivity ratio is more noticeable at higher solid volume fractions. This is due to the fact that in the presence of large amounts of particles, the effect of temperature on motion of the particles is more appreciable. The thermal conductivity ratios also reveal that the maximum enhancement of thermal conductivity of nano fluid is 30%, which occurs at the temperature of 50 °C and the solid volume fraction of 2.3%.

3.2. Comparison between current results and previous works

As we know, nano fluids containing carbon nanotubes have high thermal conductivity. A comparison of the thermal conductivity ratio of f-MWCNTs–Fe$_3$O$_4$/EG hybrid nano fluid with previous works at 35 °C is illustrated in Fig. 6. It can be seen that the thermal conductivity of ethylene glycol enhances to 22% with adding hybrid particles ($\phi = 2\%$), meanwhile the maximum enhancement reported in previous works is 17% in the same volume fraction.

3.3. Proposing new correlation

Due to lack of an appropriate and accurate correlation for predicting the thermal conductivity ratio of f-MWCNTs–Fe$_3$O$_4$/EG hybrid

Fig. 1. XRD pattern for f-MWCNTs (up) and Fe$_3$O$_4$ nanoparticles (down).
nano fluid, a correlation is presented based on the experimental results. This correlation, expressed in Eq. (3), is a simple power-multiplicative function of temperature and solid volume fraction. It has a very high accuracy with $R^2 = 0.9904$ and is valid for the temperature range of 25 °C to 50 °C and volume concentrations ranging from 0.1% to 2.3%.

$$\frac{k_{nf}}{k_{bf}} = 1 + 0.0162 \phi^{0.7038} T^{0.6009}$$ \hspace{1cm} (3)

where k_{nf} and k_{bf} are respectively the thermal conductivity of nano fluid and base fluid. Moreover, T is the temperature of the nano fluid in °C and ϕ is the solid volume fraction in vol%.

A comparison between the outputs of suggested correlation and the experimental findings is shown in Fig. 7. It can be understood that the most of the data are neighboring the equality line or on it which is acceptable for an empirical correlation.

To determine the accuracy of the suggested empirical correlation, the margin of deviation of the thermal conductivity ratio was calculated by Eq. (4) [36]:

$$\text{Margin of deviation} = \left(\frac{k_{nf}}{k_{bf}} \text{Exp} - \frac{k_{nf}}{k_{bf}} \text{Pred} \right) \times 100\%.$$ \hspace{1cm} (4)

Fig. 8 presents the margin of deviation for all data based on Eq. (4). As shown in Fig. 8, the maximum value of deviation margin is 1.58%.

Fe_{3}O_{4}

MWCNTs

Nanofluid Samples
Figs. 7 and 8 show the excellent agreement between the correlation outputs and experimental data.

In order to demonstrate the margin of deviation at each point, the curve-fitting on the experimental data obtained by proposed correlation for temperatures of 30 °C, 40 °C and 50 °C is illustrated in Fig. 9. As can be observed, in most points, data related to the experiments and correlation overlap each other or exhibit a minor deviation. This behavior shows that suggested correlation has an appropriate accuracy.

4. Conclusion

In the present study, the thermal conductivity of f-MWCNTs–Fe₃O₄/EG hybrid nanofluids in temperature ranging from 25 °C to 50 °C for various samples of nanofluids with solid volume fractions of 0.1%, 0.25%, 0.45%, 0.8%, 1.25%, 1.8% and 2.3% was examined. Experimental finding revealed that the thermal conductivity enhances with increasing the solid volume fraction and temperature. Results also showed that, at higher temperatures, the variation of thermal conductivity ratio with solid volume fraction was more than that at lower temperatures. Furthermore, the effect of temperature on
the thermal conductivity ratio was more noticeable at higher solid volume fractions. The maximum enhancement of thermal conductivity of nanofluid was 30%, occurring at the temperature of 50 °C and the solid volume fraction of 2.3%. Finally, in order to predict the thermal conductivity ratio of f-MWCNTs/EG hybrid nanofluid, a new correlation was suggested using experimental data. The maximum value of deviation margin was 1.58%. Comparisons showed an excellent agreement between the correlation outputs and experimental data.

Fig. 9. Comparisons between experimental data and correlation outputs for various temperatures.

References

