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Abstract 
In this article, using the scaled boundary finite element semi-analytical method, complete graphene nanosheets 
with simulated structural defects and its mechanical behavior were investigated. In this analysis, the atomic 
bond between carbon atoms was modeled with a rod with a circular cross section and then scaled boundary 
finite element relationships were projected based on the model geometry. The comparison of the results 
obtained from the scaled boundary finite element method with molecular dynamics showed that this analysis 
method can be used with high accuracy as a continuous medium method in the mechanical analysis of complete 
or structurally defective nanographene sheets. The existence of a structural defect significantly reduces the 
strength and strain of the nanographene sheet in such a way that the stress of breaking is reduced by more than 
34% and the strain of breaking is reduced by more than 50%. Also, if instead of the rod element, the 
nanographene plate is considered a continuous medium plate, and in order to create a geometry identical to the 
problems with the rod element, the material-free medium is simulated with zero elastic modulus elements. The 
results will not have the same accuracy as the results with the bar element. 
Keywords: Scaled finite boundary element, square nano-graphene sheet, structural defects, mechanical 
behavior, molecular dynamics 
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 چكیده 
گرافن با عیوب ساختاری شبیه سازی مربعی ت کامل ان محدود مرزی مقیاس شده، نانوصفحابا استفاده از روش نیمه تحلیلی المدر این مقاله 

شد و  سازیای مدلهای کربن با یک میله با مقطع دایرهشده و رفتار مکانیکی آن مورد بررسی قرار گرفت. در این تحلیل، پیوند اتمی بین اتم
اجزای محدود مرزی  آمده از روشدستبینی شد. مقایسه نتایج بههندسه مدل پیش بندی شده بر اساسسپس روابط اجزای محدود مرزی مقیاس

تواند با دقت بالایی به عنوان یک روش محیط پیوسته در آنالیز مکانیکی شده با دینامیک مولکولی نشان داد که این روش آنالیز میمقیاس
بل توجهی عیب ساختاری استحکام و کرنش ورق نانوگرافن را به میزان قاهای نانوگرافن کامل یا معیوب ساختاری استفاده شود. وجود ورق

درصد کاهش می یابد. همچنین اگر به جای عنصر  50درصد و کرنش شکست بیش از  34کاهش می دهد به گونه ای که تنش شکست بیش از 
 مواد بدون محیط میله، عنصر مشکلات با مشابه ای دسهنه ایجاد منظور به و شود گرفته نظر در پیوستهصفحه متوسط میله، ورق نانوگرافن یک 

 .ندارند دقتی نوار عنصر با نتایج اندازه به نتایج. شود سازی شبیه صفر الاستیک مدول عناصر با

 .تار مکانیکی، دینامیک مولکولیگرافن، عیوب ساختاری، رفمربعی المان مرزی محدود مقیاس شده، نانوصفحات  ها:لیدواژهک
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Introduction 
Graphene, as a two-dimensional material, with 
remarkable electrical, thermal and mechanical 
properties, has attracted the attention of many 
researchers in the last few decades. This material 
with elastic modulus and strength of 1TPa and 
130GPa, respectively, is considered one of the best 
options for strengthening nanocomposites and 
electronic devices in micro-nano dimensions [1]. 
Many efforts have been made to determine the 
mechanical properties and to model the behavior of 
graphene nanosheets. 
Emelchenko et al. (1997) investigated the fracture 
dynamics of nano-graphene plates of the chair 
handle and obtained the value of the stress intensity 
factor using Griffith's energy theory (4.7-6 
Mpa√m)[2]. 
Zhang et al. (2012) investigated the fracture and 
crack growth in a graphene nanosheet under shear 
stress loading and the second crack mode using 
molecular dynamics. They proved that the crack 
growth depends on the phase angle, which is a 
multiple of 30 degrees compared to the crack 
opening line [3]. 
Khar et al. (2007) investigated the mechanical 
properties of graphene nanosheets with large cracks 
by simultaneously using continuum mechanics and 
molecular dynamics. They found that the cross-
sectional area of defects, perpendicular to the 
loading direction, has a greater effect than the same 
The size of cracks and defects is in other directions. 
They also proved that in flawed plates with a size of 
10 Angstroms, the fracture stress calculation with 
the used method is very consistent with Griffith's 
relations [4]. 
Zhou et al. (2012) calculated the value of the stress 
intensity factor for the chair arm 4.21Mpa√m and for 
the zigzag 3.71Mpa√m. They also showed that in the 
zigzag nanoplates the crack growth is regular and 
similar, but in the armchair plates it is irregular. 
is[5]. 
Devapriya et al. (2014) obtained the fracture of 
graphene nanosheets using molecular dynamics and 
calculating integral J at different temperatures and 
showed that the critical value of J depends on the 
crack length [6]. 
Min Cui et al. (2014) investigated the fracture and 
crack growth in a chair handle nanographene plate 
under prestress using molecular dynamics. In this 
article, they proved that for atomic bond fracture in 
carbon, the bond length must be stretched to 100%. 
[7]. 
Hanking-Yen et al. (2015) used the Griffith criterion 
for the growth of the nanographene plate and proved 
that the Griffith criterion can also be used for the 
nanographene structure in sizes less than 10 

nanometers, but it calculates the fracture stress to a 
lesser extent. [8]. 
J. Li Tsai et al. (2009) investigated the fracture and 
crack growth by the method of continuous 
environment mechanics and molecular dynamics 
and proved that the strain energy released in both 
methods is equal with a small difference and 
suggested that the strain energy released can be be 
used as a parameter in modeling the failure of 
nanographene sheets [9]. 
  The scaled boundary finite element method is a new 
semi-analytical method that is used to solve 
equations with partial derivatives. In this method, 
which combines the advantages of the finite element 
and boundary element methods, the discretization is 
done only on the boundaries, and therefore, like the 
boundary element method, the dimensions of the 
problem are reduced to one dimension, and like the 
finite element method, no fundamental solution is 
needed. does not have. 
Wolf et al. (1995) mentioned relationships based on 
similarity principles as an alternative to the 
boundary component method [10]. 
Song [11], Lindman [12] and Chidgezi [13], using the 
scaled boundary finite element, investigated the 
crack growth in different materials and showed that 
this method as an efficient and high accuracy method 
can be used in problems benefit failure 
From the techniques that have been used so far to 
study the fracture of nanographene, numerical 
techniques with high computational cost, such as 
molecular dynamics or Monte Carlo, can be 
mentioned, which have various limitations. Many 
attempts have been made to fill the gap between 
molecular methods and continuum mechanics, 
however, a comprehensive method in continuum 
mechanics to study graphene nanosheets has not yet 
been found. 
In this article, for the first time, the mechanical 
behavior of nano-graphene has been studied using 
the scaled boundary finite element method, which, 
due to the high speed and accuracy of this method, 
can be a suitable substitute for the finite element in 
the future. 
 
Scaled boundary finite element relations  
In the scaled boundary element, the scale point O is 
located inside the environment and at a location 
from which the entire external boundary is visible. 
By scaling the boundary S in the radial direction 
relative to the scale point O, using the radial 
coordinate ξ that is between zero and one, the entire 
analyzed domain is divided into triangular sections, 
each of which corresponds to boundary elements Se 
(Figure 1 ). 
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Figure 1: Two-dimensional SBFM coordinates 

(1) 𝑥(𝜂) = [𝑁(𝜂)]{𝑥}           𝑦(𝜂) = [𝑁(𝜂)]{𝑦} 
                              
In relation (1), η∈[-1,1] is the peripheral coordinate 
and (y x ,) is the coordinate of the Cartesian points of 
the beginning and end points of the Se element, i.e. 
where ξ=1 (relation 2). 

(2) 𝑥 = {
𝑥1
𝑥2
}         𝑦 =   {

𝑦1
𝑦2
} 

 
To obtain the points inside the element, where 
ξ∈[0,1], relations 3 and 4 are used: 

(3) 𝑥(𝜉, 𝜂) = 𝜉𝑥(𝜂) = 𝜉[𝑁(𝜂)]{𝑥}  
 

(4) y(𝜉, 𝜂) = 𝜉𝑦(𝜂) = 𝜉[𝑁(𝜂)]{𝑦}  
                                                     
The relationship between the gradient operator in 
Cartesian coordinates and the scaled boundary 
element is as follows: 

(5) {

𝛿

𝛿𝜉

𝜕

𝜕𝜂

} = [𝐽(𝜉, 𝜂)] {

𝛿

𝛿𝑥
𝜕

𝜕𝜂 

}  

  
that the Jacobian matrix is calculated as follows: 

(6)  

[𝐽(𝜉, 𝜂)] = [
1 0
0 𝜉

] [
𝑥(𝜂) 𝑦(𝜂)

𝑥(𝜂),𝜂 𝑦(𝜂),𝜂
] 

[
1 0
0 𝜉

] [𝐽(𝜂)] 
 
 
The displacement at any point in the polygonal 
environment is obtained from the following 
equation: 

(7) 𝑢(𝜉, 𝜂) = 𝑁(𝜂)𝑢(𝜉) 
 
In the above relationship, u(ξ) is the displacement at 
the corner points. 
To calculate strains, it is calculated from equation 8: 

(8) ϵ(𝜉, 𝜂) = 𝐿𝑢(𝜉, 𝜂) 
 
  where L is the differential matrix operator: 

(9) 
𝐿 = 𝑏1(𝜂)

𝜕

𝜕𝜉
+ 𝜉−1𝑏2(𝜂)

𝜕

𝜕𝜂
 

 
In the above equation, the coefficients b1 and b2 are: 

(10) 𝑏1 =
1

|𝐽(𝜂)|
[

𝑦(𝜂),𝜂 0

0 −𝑥(𝜂),𝜂
𝑥(𝜂),𝜂 𝑦(𝜂),𝜂

] 

(11) 𝑏2 =
1

|𝐽(𝜂)|
[

−𝑦(𝜂) 0
0 𝑥(𝜂)

𝑥(𝜂) −𝑦(𝜂)
] 

 
The strain at any point of the environment is 
obtained as follows: 

(12) ϵ(𝜉, 𝜂) = 𝐵1 (𝜂)𝑢(𝜉) ,𝜉 +  𝜉
−1𝐵2 (𝜂)𝑢(𝜉) 

 
        that B_1 and B_2 are calculated from the 
following equation: 

(13)  𝐵1 = 𝑏1(𝜂)𝑁(𝜂) 
(14) 𝐵2 = 𝑏2(𝜂)𝑁(𝜂),𝜂                 

  The following equation can be used to calculate the 
stress at any point: 

(15) 𝜎(𝜉, 𝜂) = 𝐷𝐵1(𝜂)𝑢(𝜉),𝜉 + 𝜉
−1𝐷𝐵2 (𝜂)𝑢(𝜉) 

 
By applying the virtual work method to equation 5, 
the scaled boundary finite element equation that can 
be solved analytically in the ξ direction is calculated 
as follows: 

(16) 
𝐸0𝜉

2𝑢(𝜉),𝜉𝜉 + (𝐸0 − 𝐸1 + 𝐸1
𝑇)𝜉𝑢(𝜉),𝜉 −

(𝐸1
𝑇−𝐸2)𝑢(𝜉) = 0  

 
    The values of E_0, E_1 and E_2 can be calculated 
from relations 17, 18 and 19: 

(17) 𝐸0 = ∫ 𝐵1 (𝜂)
𝑇𝐷𝐵1 (𝜂)|𝐽(𝜂)|𝑑𝜂

1

−1
              

(18) 𝐸1 = ∫ 𝐵2 (𝜂)
𝑇𝐷𝐵1 (𝜂)|𝐽(𝜂)|𝑑𝜂

1

−1

 

(19) 𝐸2 = ∫ 𝐵2 (𝜂)
𝑇𝐷𝐵2 (𝜂)|𝐽(𝜂)|𝑑𝜂

1

−1

 

 
 
Equation 20 can be used to calculate the force at any 
point: 

(20) 𝑞(𝜉) = 𝐸0𝜉𝑢(𝜉),𝜉 + 𝐸1
𝑇𝑢(𝜉) 

To solve the scaled boundary finite element equation 
(Equation 16), by introducing a variable change, the 
equation becomes a first-order ordinary differential 
equation with twice the number of unknowns[14] 
where the matrix z is the Hamiltonian matrix and the 
coefficient of the first-order ordinary differential 
equation is It will be as follows: 

(21) 𝑧 = [
𝐸0
−1𝐸1

𝑇 −𝐸0
−1

−𝐸2 + 𝐸1𝐸0
−1𝐸1

𝑇 −𝐸0
−1𝐸0

−1] 

 
Equation 22 can be used to calculate eigenvalues and 
eigenvectors: 

(22) [𝑧][𝜙] = −[𝜙][Λ] 
 
And the eigenvector matrix is as follows: 

(23) [𝜙] = [
𝜙11 𝜙12
𝜙21 𝜙22

] 

 
The hardness matrix can be calculated from equation 
24: 
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(24) 𝐾 = [𝜙21][𝜙11]
−1 

 
We will rewrite the relation 7 and 20 respectively: 
 
If the object under analysis is enclosed between two 
regions ξ=ξ_1 of the inner region and ξ=ξ_2 of the 
outer region as shown in Figure 2, the integration 
constants and the stiffness matrix will be calculated 
as follows: 
  

(25) 𝑢(𝜉) = 𝜙11𝜉
−𝜆𝑖{𝑐1} + 𝜙12𝜉

−𝜆𝑖{𝑐2} 
(26) 𝑞(𝜉) = 𝜙21𝜉

−𝜆𝑖{𝑐1} + 𝜙22𝜉
−𝜆𝑖{𝑐2} 

 

 
Figure 2: Bounded environment with similar internal and 

external boundaries 

 

(27) {
𝑐1
𝑐2
} = [

𝜙11𝜉1
−𝜆 𝜙12𝜉1

𝜆

𝜙21𝜉2
−𝜆 𝜙22𝜉1

𝜆
]

−1

{
𝑢(𝜉1)
𝑢(𝜉2)

} 

  
 
Modeling of the square nanographene sheet in 
SBFEM  
From the perspective of molecular mechanics 
dynamics, a graphene nanosheet can be considered 
as a large molecule containing carbon atoms. Atomic 
nuclei can be points in matter. Their movement is in 
the form of a force field that is created by nucleus-
electron and nucleus-nucleus interactions. Total 
potential energy, ignoring electromagnetic 
interactions, is the sum of energies related to 
covalence and valence or bonding and non-bonding 
interactions: 

(29) 𝑈 = 𝑈𝑟 + 𝑈θ + 𝑈𝜙 + 𝑈𝜔 + 𝑈𝑣𝑑𝜔  

 
where Ur is the interaction effect in bond tension, UӨ 
is for the angular bending of the bond, Uφ is the 
effect of bending outside the bond and between two 
surfaces, Uω is the out-of-surface torsion energy and 
Uνdω is the energy of non-bond van der Waals 
interactions, which is shown in Figure 3 . 
  Assuming that covalent forces between carbon 
atoms can be replaced by using harmonic functions, 
the potential energy related to covalent bonds 
between carbon atoms are defined by the following 
equations. 

(30) 
𝑈𝑟 =

1

2
𝑘𝑟(𝑟 − 𝑟0)

2 = 
1

2
𝑘𝑟(𝛥𝑟)

2 

(31) 𝑼𝜽 =
𝟏

𝟐
𝒌𝜽(𝜽 − 𝜽𝟎)

𝟐 = 
1

2
𝑘𝜃(Δ𝜃)

2                                    

(32) 
𝑈𝜑 =

1

2
𝑘𝜑(𝛥𝜑)

2 

which respectively Ur is the tensile energy, Uθ is the 
bending energy, Uφ is the torsional energy of the 
bond and kr, kθ and kφ are respectively the 
coefficients of tension, bending and torsion of the 
chemical bond, whose values are shown in Table 1 
[15] 

Table 1: The molecular mechanics constants 

  Also, in the above relationships, r0 θ0 depends on 
the distance between atoms and the bond angle in 
the free state, and the values of r and θ depend on 
the distance and the bond angle after shape change. 
As a result, the parameters Δθ, Δr and Δφ indicate 
the changes in bond length, bond angle and bond 
twist angle, respectively. In the finite element 
modeling of the carbon-carbon bond, it is replaced 
by an isotropic rod element with length L, cross-
sectional area A, and moment of inertia I. The strain 
energy of the beam element with these 
characteristics under pure axial load N, under 
bending moment M and under pure torsional 
moment T are defined as follows: 

(33) 𝑈𝑁 = ∫
𝑁2

2𝐸𝐴
𝑑𝐿 =

𝐸𝐴

2𝐿

𝐿

0

(𝛥𝐿)2 

 
(34) 
  

𝑼𝑴 = ∫
𝑴𝟐

𝟐𝑬𝑰

𝑳

𝟎
𝒅𝑳 =

𝑬𝑰

𝟐𝑳
(𝟐𝜶)𝟐  

 

(35) 𝑈𝑇 = ∫
𝑇2

2𝐺𝐽

𝐿

0

𝑑𝐿 =
𝐺𝐽

2𝐿
(2𝛽)2 

 
If in the scaled boundary finite element, the cross 
section is considered as a circle with radius r, then 
the radius of the circle will be 0.0733 nm and the 
elastic modulus will be 5.487 TPa. 

 
Figure 3: Interatomic interactions in molecular mechanics 

coefficient value 

Kθ 8.76 × 10-10 N nm/rad2 

Kφ 78 × 10-10 N nm/rad2 

Kr 6.52 × 10-7 N/nm   
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Simulating the nanographene sheet in the scaled 
boundary finite element 
To simulate the nanographene sheets, as mentioned 
before, the atomic bond was converted into a rod 
with an equivalent cross-sectional area. In this 
article, all the calculations were done by MATLAB 
software. 
To perform calculations in the scaled boundary finite 
element, as seen in the figure, each bar is like a 
continuous medium, which is limited in the 
coordinates of the scaled boundary element between 
two coordinates ξ_1≪ξ≪1, the value of ξ_1 according 
to the calculations Previously and according to 
Figure 4, it is calculated as follows and it should be 
noted that L is equal to the initial bond length, 0.142 
nm in the center of the connection of each rod and d 
is the diameter of the rod 0.146 nm: 
 

(36) 
cos(30) =

𝑑

𝑥
  
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑥 =

𝑑

cos (30)
=  0.168 𝑛𝑚  

(37) 𝐿0 = 𝐿 −
𝑥

2
= 0.142 − 0.084 = 0.058𝑛𝑚 

(38) 𝐿1 =  𝐿 +
𝑥

2
= 0.142 + 0.084 = 0.226nm 

(39) 𝜉1 =
𝐿0
𝐿1
=
0.058

0.226
= 0.256 

  
Figure 4: Interatomic interactions in molecular mechanics 

(a) How to connect the rod elements and (b) the bar 
element is displayed with scaled boundary finite element 

coordinates. 
The steps of analysis and programming in MATLAB 
software are as follows: 
1- Entry of basic information including network 
dimensions, elastic modulus, forces, boundary 
conditions, etc. 
2- Using relations 17 to 23, to calculate E_0, E_1, E_2, 
vector and eigenvalues assuming that the 
nanographene sheet is a complete element. (Figure 
5(a)) 
3- Calculation of the stiffness matrix of each element 
from equation 28 for the bar element in the range of 
0.256≪ξ≪1. (Figure 5(b)) 
4- Assembling the hardness matrices of each bar and 
creating the total hardness matrix k_total 

5- Applying point forces and boundary conditions in 
the relation f=k_total u, calculating the 
displacements on the perimeter points 1 to 10 for 
each rod 
6- Calculation of integration coefficients using 
equation 27 for each bar 
7- Calculation of stress and strain for each rod using 
relations 25 and 26 

  
Figure 5: Interatomic interactions in molecular 

mechanics 

Results and Discussion 
The examined sample for validation is a defect-free 
nanographene sheet with dimensions of 25 x 25 
angstroms (Figure 6). 

Figure 6: The uniaxial tensile load on a prefect Nano 
graphene sheet 

Figure 7 shows the comparison between stress and 
strain of nanographene network between two 
methods of molecular dynamics and scaled 
boundary finite element. 

Figure 7: Comparing stress-strain curves of the prefect 
sample obtained by SBFM and MD 
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Malkuti et al. (2016) [16] reported the amount of 
ultimate stress and failure strain through molecular 
dynamics and by programming in LAMMPS software 
as 130.92 and 24.8% GPa, respectively, and these 
values were scaled using boundary finite element, 
respectively. 127.3 GPa and 24.9% were calculated 
and with experimental tests, respectively, 130 GPa ± 
10 GPa and 25% were reported [17]. As seen in 
Figure 7, the error rate between the final stress 
values obtained from molecular dynamics and the 
scaled boundary finite element is 2.8%. In the scaled 
boundary element method, according to the equation 
of the stress-strain relationship with a three-line 
curve, the graphs obtained are segment by segment 
straight lines, which increase the amount of stress 
and as a result of breaking the interatomic bond, the 
hardness matrix decreases. found and therefore the 
slope of the stress and strain diagram lines also 
decreases. But despite this simplification, the 
accuracy of the obtained results is very significant. 
With the increase of stress from 100GPa, which is 
equivalent to 15% strain, the slope of the graph 
decreases significantly and tends to the asymptotic 
state to some extent. 

 
Figure 8: Two vacancies in the line perpendicular to the 

line load direction 

 
Simulation of nanographene sheet with 
structural defects 
Figures 8 and 9 show a nanographene sheet with a 
structural defect of the vacancy network. In Figure 8, 
the network defect includes the absence of 2 carbon 
atoms and as a result the absence of 6 atomic bonds, 
and in Figure 9, the network defect includes three 
carbon atoms, which causes the absence of 9 atomic 
bonds. In both cases, the vacancy defect is 
perpendicular to the force line. 
  As can be seen in Figures 10 and 11, the results are 
almost in good agreement. By observing and 
comparing the results of a complete plate with plates 
with structural defects, it can be seen that the 
fracture stress values are significantly reduced, so 
that the fracture stress has decreased from 128 GPa 

to 77 GPa, so it can be concluded that there is a 
vacancy defect. It can reduce the strength of a 
nanographene sheet by about 40%. Another 
noteworthy point is that the stress-strain 
relationship in these plates remains almost linear to 
a large extent. The failure strain is reduced to less 
than half compared to plates without structural 
defects. 

  
Figure 9: Three vacancies in the line perpendicular to the 

line load direction 

 
Figure 10:  Comparing stress-strain curves of a sample 

with two vacancies obtained by SBFM and MD 

 

 
Figure 11:  Comparing stress-strain curves of a sample 

with three vacancies obtained by SBFM and MD 
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Simulation of nanographene plate with scaled 
boundary finite element  
If in the simulation of graphene nanosheets with a 
scaled boundary finite element, instead of using a 
rod element in the simulation, the environment is 
considered continuous, and in order to create the 
same geometry as problems with a rod element, the 
area free of matter with If the elastic coefficient is 
considered zero, the results will have a significant 
error. 
In Figure 12, the stress-strain diagram for the 
sample with three blanks is compared in all three 
methods. As can be seen, in the simulation with the 
scaled boundary element method with continuous 
environment, the amount of fracture stress and 
failure strain will be 79.8 GPa and 11%, respectively, 
which compared to the scaled boundary element 
method with rod element and molecular dynamics 
has an error of 6 % is. 

 
Figur 12:  Comparing stress-strain curves of a sample with 

three vacancies obtained by SBFM with bar element, 
Continuum  and MD 
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