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Abstract

In this article, using the scaled boundary finite element semi-analytical method, complete graphene nanosheets
with simulated structural defects and its mechanical behavior were investigated. In this analysis, the atomic
bond between carbon atoms was modeled with a rod with a circular cross section and then scaled boundary
finite element relationships were projected based on the model geometry. The comparison of the results
obtained from the scaled boundary finite element method with molecular dynamics showed that this analysis
method can be used with high accuracy as a continuous medium method in the mechanical analysis of complete
or structurally defective nanographene sheets. The existence of a structural defect significantly reduces the
strength and strain of the nanographene sheet in such a way that the stress of breaking is reduced by more than
34% and the strain of breaking is reduced by more than 50%. Also, if instead of the rod element, the
nanographene plate is considered a continuous medium plate, and in order to create a geometry identical to the
problems with the rod element, the material-free medium is simulated with zero elastic modulus elements. The
results will not have the same accuracy as the results with the bar element.

Keywords: Scaled finite boundary element, square nano-graphene sheet, structural defects, mechanical
behavior, molecular dynamics
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Introduction

Graphene, as a two-dimensional material, with
remarkable electrical, thermal and mechanical
properties, has attracted the attention of many
researchers in the last few decades. This material
with elastic modulus and strength of 1TPa and
130GPa, respectively, is considered one of the best
options for strengthening nanocomposites and
electronic devices in micro-nano dimensions [1].
Many efforts have been made to determine the
mechanical properties and to model the behavior of
graphene nanosheets.

Emelchenko et al. (1997) investigated the fracture
dynamics of nano-graphene plates of the chair
handle and obtained the value of the stress intensity
factor using Griffith's energy theory (4.7-6
Mpa\/m)[Z].

Zhang et al. (2012) investigated the fracture and
crack growth in a graphene nanosheet under shear
stress loading and the second crack mode using
molecular dynamics. They proved that the crack
growth depends on the phase angle, which is a
multiple of 30 degrees compared to the crack
opening line [3].

Khar et al. (2007) investigated the mechanical
properties of graphene nanosheets with large cracks
by simultaneously using continuum mechanics and
molecular dynamics. They found that the cross-
sectional area of defects, perpendicular to the
loading direction, has a greater effect than the same
The size of cracks and defects is in other directions.
They also proved that in flawed plates with a size of
10 Angstroms, the fracture stress calculation with
the used method is very consistent with Griffith's
relations [4].

Zhou et al. (2012) calculated the value of the stress
intensity factor for the chair arm 4.21Mpavm and for
the zigzag 3.71Mpavm. They also showed that in the
zigzag nanoplates the crack growth is regular and
similar, but in the armchair plates it is irregular.
is[5].

Devapriya et al. (2014) obtained the fracture of
graphene nanosheets using molecular dynamics and
calculating integral | at different temperatures and
showed that the critical value of | depends on the
crack length [6].

Min Cui et al. (2014) investigated the fracture and
crack growth in a chair handle nanographene plate
under prestress using molecular dynamics. In this
article, they proved that for atomic bond fracture in
carbon, the bond length must be stretched to 100%.
[7].

Hanking-Yen et al. (2015) used the Griffith criterion
for the growth of the nanographene plate and proved
that the Griffith criterion can also be used for the
nanographene structure in sizes less than 10
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nanometers, but it calculates the fracture stress to a
lesser extent. [8].

J. Li Tsai et al. (2009) investigated the fracture and
crack growth by the method of continuous
environment mechanics and molecular dynamics
and proved that the strain energy released in both
methods is equal with a small difference and
suggested that the strain energy released can be be
used as a parameter in modeling the failure of
nanographene sheets [9].

The scaled boundary finite element method is a new
semi-analytical method that is used to solve
equations with partial derivatives. In this method,
which combines the advantages of the finite element
and boundary element methods, the discretization is
done only on the boundaries, and therefore, like the
boundary element method, the dimensions of the
problem are reduced to one dimension, and like the
finite element method, no fundamental solution is
needed. does not have.

Wolf et al. (1995) mentioned relationships based on
similarity principles as an alternative to the
boundary component method [10].

Song [11], Lindman [12] and Chidgezi [13], using the
scaled boundary finite element, investigated the
crack growth in different materials and showed that
this method as an efficient and high accuracy method
can be used in problems benefit failure

From the techniques that have been used so far to
study the fracture of nanographene, numerical
techniques with high computational cost, such as
molecular dynamics or Monte Carlo, can be
mentioned, which have various limitations. Many
attempts have been made to fill the gap between
molecular methods and continuum mechanics,
however, a comprehensive method in continuum
mechanics to study graphene nanosheets has not yet
been found.

In this article, for the first time, the mechanical
behavior of nano-graphene has been studied using
the scaled boundary finite element method, which,
due to the high speed and accuracy of this method,
can be a suitable substitute for the finite element in
the future.

Scaled boundary finite element relations

In the scaled boundary element, the scale point O is
located inside the environment and at a location
from which the entire external boundary is visible.
By scaling the boundary S in the radial direction
relative to the scale point O, using the radial
coordinate & that is between zero and one, the entire
analyzed domain is divided into triangular sections,
each of which corresponds to boundary elements Se
(Figure 1).
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Figure 1: Two-dimensional SBFM coordinates

x(m) = [N I{x} ym) =[Ny 1)

In relation (1), n€[-1,1] is the peripheral coordinate
and (y x,) is the coordinate of the Cartesian points of
the beginning and end points of the Se element, i.e.
where &=1 (relation 2).

=0 v=0Y )

To obtain the points inside the element, where
£€[0,1], relations 3 and 4 are used:

x(§,m) = &x(m) = EIN(M){x} (3)
y(&m = &y(m) = SINMI{y} 4)
The relationship between the gradient operator in

Cartesian coordinates and the scaled boundary
element is as follows:

S S5
%=lEm] % (5)
an an

that the Jacobian matrix is calculated as follows:

) ooy xm oy

[](f.n)]—[o f] [x(n),n y(may (6)
10

0 U@

The displacement at any point in the polygonal
environment is obtained from the following
equation:

u(§,m = Nmu(d) ()

In the above relationship, u(%) is the displacement at
the corner points.
To calculate strains, it is calculated from equation 8:

€€ = Lu(€,n) (8
where L is the differential matrix operator:

d 1 d
L= b1(n)§+f bz(’l)%

9)

In the above equation, the coefficients b1 and bz are:
1 vy 0
by =—— —x(n), 10
o] " (10)
x(My Y@y
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The strain at any point of the environment is
obtained as follows:

€§,m =By Mu(®) ¢+ {B; Mu®) (12)

that B_.1 and B_2 are calculated from the
following equation:
By = by (mN (@) (13)
B, = bz(’?)N(TI),n (14)
The following equation can be used to calculate the
stress at any point:

a(§&,m) = DB, (Mu(é) ¢ + DB, (Mu(§) (15)

By applying the virtual work method to equation 5,
the scaled boundary finite element equation that can
be solved analytically in the € direction is calculated
as follows:

Eofzu(f),g’f + (Eo —E + ElT)fu(f),f -

(E,"—E;)u(®) = 0 (16)

The values of E_0, E_1 and E_2 can be calculated
from relations 17, 18 and 19:

Eo = [, B, (DB, (U ()ldn (17)
E, = f B, ()" DBy (M (m)ldn (18)
E, = f B, (1)" DB, (D (n)ldn (19)

Equation 20 can be used to calculate the force at any
point:
(&) = Eo§u(§)¢ + Ey"u(®) (20)
To solve the scaled boundary finite element equation
(Equation 16), by introducing a variable change, the
equation becomes a first-order ordinary differential
equation with twice the number of unknowns[14]
where the matrix z is the Hamiltonian matrix and the
coefficient of the first-order ordinary differential
equation is It will be as follows:
-1 T -1
| I (21)
—-E, +E\E, "E;7 —E, E,
Equation 22 can be used to calculate eigenvalues and
eigenvectors:

[z][¢] = —[#][A] (22)
And the eigenvector matrix is as follows:

_ ¢11 ¢12
#1=[5 o 23

The hardness matrix can be calculated from equation
24:
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K = [¢p21][¢11]7" (24)

We will rewrite the relation 7 and 20 respectively:

If the object under analysis is enclosed between two
regions §=¢_1 of the inner region and &=§_2 of the
outer region as shown in Figure 2, the integration
constants and the stiffness matrix will be calculated
as follows:

u(é) = ¢115_A"{C1} + ¢125_Ai{02} (25)
q(§) = ¢215_Ai{c1} + ¢225_Ai{52} (26)
§
&

Figure 2: Bounded environment with similar internal and
external boundaries
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Modeling of the square nanographene sheet in
SBFEM

From the perspective of molecular mechanics
dynamics, a graphene nanosheet can be considered
as a large molecule containing carbon atoms. Atomic
nuclei can be points in matter. Their movement is in
the form of a force field that is created by nucleus-
electron and nucleus-nucleus interactions. Total
potential energy, ignoring electromagnetic
interactions, is the sum of energies related to
covalence and valence or bonding and non-bonding
interactions:

U:UT+U9+U¢+Uw+Uvdw (29)

where Ur is the interaction effect in bond tension, U
is for the angular bending of the bond, U is the
effect of bending outside the bond and between two
surfaces, Uw is the out-of-surface torsion energy and
Uvdw is the energy of non-bond van der Waals
interactions, which is shown in Figure 3.

Assuming that covalent forces between carbon
atoms can be replaced by using harmonic functions,
the potential energy related to covalent bonds
between carbon atoms are defined by the following
equations.

1 1
Ur = Ekr(r —1)? = Ekr(AT)z
Ug = 3ko(8 — 89)? = Sko(A6)? (31

(30)
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1

U(p — Ekqg(AQD)Z (32)
which respectively U: is the tensile energy, Up is the
bending energy, Uy is the torsional energy of the
bond and kr, ke and ke are respectively the
coefficients of tension, bending and torsion of the
chemical bond, whose values are shown in Table 1
[15]

Table 1: The molecular mechanics constants

coefficient value

K6 8.76 x 10-10 N nm/rad2
Ko 78 x 10-10 N nm/rad2
Kr 6.52 x 10-7 N/nm

Also, in the above relationships, ro 6o depends on
the distance between atoms and the bond angle in
the free state, and the values of r and 6 depend on
the distance and the bond angle after shape change.
As a result, the parameters A6, Ar and A indicate
the changes in bond length, bond angle and bond
twist angle, respectively. In the finite element
modeling of the carbon-carbon bond, it is replaced
by an isotropic rod element with length L, cross-
sectional area A, and moment of inertia I. The strain
energy of the beam element with these
characteristics under pure axial load N, under
bending moment M and under pure torsional
moment T are defined as follows:

Uy = v dL =22 vy 33

v= | gEadh=7r b (33)
L M? EI

UM= OEszz(Za)z [34)

v =fLT—2dL=ﬂ(2ﬁ)2 (35)
"), 26] 2L

If in the scaled boundary finite element, the cross
section is considered as a circle with radius r, then
the radius of the circle will be 0.0733 nm and the
elastic modulus will be 5.487 TPa.

Stretching

Bending

[

Out of the plane torsion

—

Dihedral angle torsion Van der waals

Figure 3: Interatomic interactions in molecular mechanics
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Simulating the nanographene sheet in the scaled
boundary finite element

To simulate the nanographene sheets, as mentioned
before, the atomic bond was converted into a rod
with an equivalent cross-sectional area. In this
article, all the calculations were done by MATLAB
software.

To perform calculations in the scaled boundary finite
element, as seen in the figure, each bar is like a
continuous medium, which is limited in the
coordinates of the scaled boundary element between
two coordinates §_1«<§<«1, the value of §_1 according
to the calculations Previously and according to
Figure 4, it is calculated as follows and it should be
noted that L is equal to the initial bond length, 0.142
nm in the center of the connection of each rod and d
is the diameter of the rod 0.146 nm:

d yields d
cos(30) = x = cos (30) (36)
= 0.168nm
Ly=L —; — 0.142 — 0.084 = 0.058nm 37)
Li=L+ ; =0.142 + 0.084 = 0.226nm (38)
L, 0.058
1= =9376 " 0.256 (39)

Figure 4: Interatomic interactions in molecular mechanics
(a) How to connect the rod elements and (b) the bar
element is displayed with scaled boundary finite element
coordinates.

The steps of analysis and programming in MATLAB

software are as follows:

1- Entry of basic information including network
dimensions, elastic modulus, forces, boundary
conditions, etc.

2- Using relations 17 to 23, to calculate E_0,E_1, E_2,
vector and eigenvalues assuming that the
nanographene sheet is a complete element. (Figure
5(a))

3- Calculation of the stiffness matrix of each element
from equation 28 for the bar element in the range of
0.256«<&«K1. (Figure 5(b))

4- Assembling the hardness matrices of each bar and
creating the total hardness matrix k_total
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5- Applying point forces and boundary conditions in
the relation f=k total u, calculating the
displacements on the perimeter points 1 to 10 for
each rod

6- Calculation of integration coefficients using
equation 27 for each bar

7- Calculation of stress and strain for each rod using
relations 25 and 26

5 4 3 2 1 5 4
4 10 49
0
(a) (b)
Figure 5: Interatomic interactions in molecular
mechanics

Results and Discussion

The examined sample for validation is a defect-free
nanographene sheet with dimensions of 25 x 25
angstroms (Figure 6).

0F L

Force

L L
5 0 5 10 15 20 % 30

Figure 6: The uniaxial tensile load on a prefect Nano
graphene sheet
Figure 7 shows the comparison between stress and
strain of nanographene network between two
methods of molecular dynamics and scaled

boundary finite element.
140

120 F
100 | —— MD[16]

r = = SBFM
80 r

Stress(Gpa)

60 f
a0 |

20 F

0 ¥ . : . : .
0 0.05 0.1 0.15 0.2 0.25 0.3
Strain
Figure 7: Comparing stress-strain curves of the prefect
sample obtained by SBFM and MD
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Malkuti et al. (2016) [16] reported the amount of
ultimate stress and failure strain through molecular
dynamics and by programming in LAMMPS software
as 130.92 and 24.8% GPa, respectively, and these
values were scaled using boundary finite element,
respectively. 127.3 GPa and 24.9% were calculated
and with experimental tests, respectively, 130 GPa *
10 GPa and 25% were reported [17]. As seen in
Figure 7, the error rate between the final stress
values obtained from molecular dynamics and the
scaled boundary finite element is 2.8%. In the scaled
boundary element method, according to the equation
of the stress-strain relationship with a three-line
curve, the graphs obtained are segment by segment
straight lines, which increase the amount of stress
and as a result of breaking the interatomic bond, the
hardness matrix decreases. found and therefore the
slope of the stress and strain diagram lines also
decreases. But despite this simplification, the
accuracy of the obtained results is very significant.
With the increase of stress from 100GPa, which is
equivalent to 15% strain, the slope of the graph
decreases significantly and tends to the asymptotic
state to some extent.

258

20~

ey
Figure 8: Two vacancies in the line perpendicular to the
line load direction
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Simulation of nanographene sheet with
structural defects

Figures 8 and 9 show a nanographene sheet with a
structural defect of the vacancy network. In Figure 8,
the network defect includes the absence of 2 carbon
atoms and as a result the absence of 6 atomic bonds,
and in Figure 9, the network defect includes three
carbon atoms, which causes the absence of 9 atomic
bonds. In both cases, the vacancy defect is
perpendicular to the force line.

As can be seen in Figures 10 and 11, the results are
almost in good agreement. By observing and
comparing the results of a complete plate with plates
with structural defects, it can be seen that the
fracture stress values are significantly reduced, so
that the fracture stress has decreased from 128 GPa
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to 77 GPa, so it can be concluded that there is a
vacancy defect. It can reduce the strength of a
nanographene sheet by about 40%. Another
noteworthy point is that the stress-strain
relationship in these plates remains almost linear to
a large extent. The failure strain is reduced to less
than half compared to plates without structural
defects.

Figure 9: Three vacancies in the line perpendicular to the

line load direction
90

80

70

=
=

——MD[16]
- = SBFM

Stress(Gpa)
oW e o,
s & S 2
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Strain
Figure 10: Comparing stress-strain curves of a sample
with two vacancies obtained by SBFM and MD
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Figure 11: Comparing stress-strain curves of a sample
with three vacancies obtained by SBFM and MD
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Simulation of nanographene plate with scaled
boundary finite element
If in the simulation of graphene nanosheets with a
scaled boundary finite element, instead of using a
rod element in the simulation, the environment is
considered continuous, and in order to create the
same geometry as problems with a rod element, the
area free of matter with If the elastic coefficient is
considered zero, the results will have a significant
error.
In Figure 12, the stress-strain diagram for the
sample with three blanks is compared in all three
methods. As can be seen, in the simulation with the
scaled boundary element method with continuous
environment, the amount of fracture stress and
failure strain will be 79.8 GPa and 11%, respectively,
which compared to the scaled boundary element
method with rod element and molecular dynamics
has an error of 6 % is.

0

. A

70

o
S

w
S
R

— continuum
SBFM
P - - =MD[16]

Stress(GPa)
5 8 &
2

=
o

0

0 0.02 0.04 0.06 0.08 0.1 012
Strain
Figur 12: Comparing stress-strain curves of a sample with
three vacancies obtained by SBFM with bar element,
Continuum and MD
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